Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4943215
1.
1.C.H. Aerogels, M.A. Aegerter, N. Leventis, and M.A. Koebel, Aerogels Handbook (Springer-Verlag, New York, 2011).
2.
2.A. Soleimani Dorcheh and M.H. Abbasi, J. Mater. Process. Technol. 199, 10 (2008).
http://dx.doi.org/10.1016/j.jmatprotec.2007.10.060
3.
3.J.L. Gurav, I.-K. Jung, H.-H. Park, E.S. Kang, and D.Y. Nadargi, J. Nanomater. 2010, 1 (2010).
http://dx.doi.org/10.1155/2010/409310
4.
4.J. Fricke and T. Tillotson, Thin Solid Films 297, 212 (1997).
http://dx.doi.org/10.1016/S0040-6090(96)09441-2
5.
5.A. Nordgaard and W.A. Beckman, Sol. Energy 49, 387 (1992).
http://dx.doi.org/10.1016/0038-092X(92)90111-M
6.
6.N.D. Kaushika and K. Sumathy, Renew. Sustain. Energy Rev. 7, 317 (2003).
http://dx.doi.org/10.1016/S1364-0321(03)00067-4
7.
7.M. Rubin and C.M. Lampert, Sol. Energy Mater. 7, 393 (1983).
http://dx.doi.org/10.1016/0165-1633(83)90012-6
8.
8.K. McEnaney, L.A. Weinstein, D. Kraemer, H. Ghasemi, and G. Chen, Nano Energy (2015) (submitted).
9.
9.G. Pajonk, J. Non. Cryst. Solids 225, 307 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00131-8
10.
10.G.M. Pajonk, E. Elaloui, B. Chevalier, and R. Begag, J. Non. Cryst. Solids 210, 224 (1997).
http://dx.doi.org/10.1016/S0022-3093(96)00600-X
11.
11.A.J. Hunt, J. Non. Cryst. Solids 225, 303 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00048-9
12.
12.P. Wang, W. Körner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, J. Non. Cryst. Solids 145, 141 (1992).
http://dx.doi.org/10.1016/S0022-3093(05)80444-2
13.
13.E. Aschenauer, N. Bianchi, G.. P. Capitani, P. Carter, C. Casalino, E. Cisbani, C. Coluzza, R. De Leo, E. De Sanctis, D. De Schepper, V. Djordjadze, B. Filippone, S. Frullani, F. Garibaldi, J.O. Hansen, B. Hommez, M. Iodice, H.E. Jackson, R. Kaiser, J. Kanesaka, L. Lagamba, V. Muccifora, E. Nappi, W.D. Nowak, T.G. O’Neill, D. Potterveld, D. Ryckbosch, Y. Sakemi, F. Sato, a. Schwind, K. Suetsugu, T. a. Shibata, E. Thomas, M. Tytgat, G.M. Urciuoli, K. Van De Kerckhove, R. Van De Vyver, S. Yoneyama, and L.F. Zhang, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 440, 338 (2000).
http://dx.doi.org/10.1016/S0168-9002(99)00923-7
14.
14.K. Kanamori, M. Aizawa, K. Nakanishi, and T. Hanada, Adv. Mater. 19, 1589 (2007).
http://dx.doi.org/10.1002/adma.200602457
15.
15.A.R. Buzykaev, A.F. Danilyuk, S.F. Ganzhur, E.A. Kravchenko, and A.P. Onuchin, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 433, 396 (1999).
http://dx.doi.org/10.1016/S0168-9002(99)00325-3
16.
16.H. Budunoglu, A. Yildirim, M.O. Guler, and M. Bayindir, ACS Appl. Mater. Interfaces 3, 539 (2011).
http://dx.doi.org/10.1021/am101116b
17.
17.M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 623, 339 (2010).
http://dx.doi.org/10.1016/j.nima.2010.02.241
18.
18.T.M. Tillotson and L.W. Hrubesh, J. Non. Cryst. Solids 145, 44 (1992).
http://dx.doi.org/10.1016/S0022-3093(05)80427-2
19.
19.A. Emmerling and J. Fricke, J. Non. Cryst. Solids 145, 113 (1992).
http://dx.doi.org/10.1016/S0022-3093(05)80439-9
20.
20.A. Emmerling, R. Petricevic, A. Beck, P. Wang, H. Scheller, and J. Fricke, J. Non. Cryst. Solids 185, 240 (1995).
http://dx.doi.org/10.1016/0022-3093(95)00021-6
21.
21.C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
22.
22.H. Yu, D. Liu, Y. Duan, and X. Wang, Opt. Express 22, 7925 (2014).
http://dx.doi.org/10.1364/OE.22.007925
23.
23.G.R. Cunnington and S.C. Lee, J. Thermophys. Heat Transf. 12, 17 (1998).
http://dx.doi.org/10.2514/2.6318
24.
24.S. Lallich, F. Enguehard, and D. Baillis, J. Heat Transfer 131, 082701 (2009).
http://dx.doi.org/10.1115/1.3109999
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4943215 for detail information on aerogel synthesis, characterization and experiment setup.[Supplementary Material]
26.
26.M. Tabata, I. Adachi, H. Kawai, T. Sumiyoshi, and H. Yokogawa, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 668, 64 (2012).
http://dx.doi.org/10.1016/j.nima.2011.12.017
27.
27.J.S.Q. Zeng, R. Greif, P. Stevens, M. Ayers, and a. Hunt, J. Mater. Res. 11, 687 (1996).
http://dx.doi.org/10.1557/JMR.1996.0083
28.
28.H.A. Gaonkar, D. Kumar, R. Ramasubramaniam, and A. Roy, Appl. Opt. 53, 2892 (2014).
http://dx.doi.org/10.1364/AO.53.002892
29.
29.T. Fu, J. Tang, K. Chen, and F. Zhang, J. Heat Transfer 138, 032702 (2015).
http://dx.doi.org/10.1115/1.4031734
30.
30.H. Yu, D. Liu, Y. Duan, and X. Wang, Int. J. Heat Mass Transf. 70, 478 (2014).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.030
31.
31.M. Modest, Radiative Heat Transfer, 3rd ed. (Academic, Oxford, 2013).
32.
32.B. Davison, Neutron Transport Theory (Oxford University Press, London, 1957).
33.
33.B.H.J. McKellar and M.A. Box, J. Atmos. Sci. 38, 1063 (1981).
http://dx.doi.org/10.1175/1520-0469(1981)038<1063:TSGOTR>2.0.CO;2
34.
34.E. Aschenauer, N. Bianchi, and G. Capitani, Nucl. Instruments ... 440, 338 (2000).
http://dx.doi.org/10.1016/S0168-9002(99)00923-7
35.
35.T.F. Coleman and Y. Li, SIAM J. Optim. 6, 418 (1996).
http://dx.doi.org/10.1137/0806023
36.
36.S.A. Prahl, M.J.C. van Gemert, and A.J. Welch, Appl. Opt. 32, 559 (1993).
http://dx.doi.org/10.1364/AO.32.000559
37.
37.E. Stolper, Contrib. to Mineral. Petrol. 81, 1 (1982).
http://dx.doi.org/10.1007/BF00371154
38.
38.E.D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).
39.
39.Q. Fang and D.A. Boas, Opt. Express 17, 20178 (2009).
http://dx.doi.org/10.1364/OE.17.020178
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4943215
Loading
/content/aip/journal/adva/6/2/10.1063/1.4943215
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4943215
2016-02-29
2016-12-06

Abstract

Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4943215.html;jsessionid=GzN069YH-Xl5n8UFoeE9Uc8m.x-aip-live-02?itemId=/content/aip/journal/adva/6/2/10.1063/1.4943215&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4943215&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4943215'
Right1,Right2,Right3,