Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4943398
1.
1.R.V. Williamson, “The flow of pseudoplastic materials,” Industrial and Engineering Chemistry Research 11, 11081111 (1929).
http://dx.doi.org/10.1021/ie50239a035
2.
2.D.V. Lyubimov and A.V. Perminov, “Motion of a thin oblique layer of a pseudoplastic fluid,” Journal of Engineering Physics and Thermophysics 4, 920-924 (2002).
http://dx.doi.org/10.1023/A:1020371203799
3.
3.M.Y. Malik and T. Salahuddin, “Numerical solution of MHD stagnation point flow of Williamson fluid model over a stretching cylinder,” International Journal of Nonlinear Sciences and Numerical Simulation 16, 161164 (2015).
http://dx.doi.org/10.1515/ijnsns-2014-0035
4.
4.M.Y. Malik, T. Salahuddin, Arif Hussain, S. Bilal, and M. Awais, “Homogeneous-heterogeneous reactions in Williamson fluid model over a stretching cylinder by using Keller box method,” AIP Advances 5, 107227 (2015).
http://dx.doi.org/10.1063/1.4934937
5.
5.T. Salahuddin, M.Y. Malik, Arif Hussain, S. Bilal, and M. Awais, “Combined effects of variable thermal conductivity and MHD flow on pseudoplastic fluid over a stretching cylinder by using Keller box method,” Natural Sciences 5, 11-19 (2015).
6.
6.B.C. Sakiadis, “Boundary-layer behaviour on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow,” AIChE Journal 7, 26-28 (1961).
http://dx.doi.org/10.1002/aic.690070108
7.
7.L.J. Crane, “Flow past a stretching plate,” Zeitschrift fur Angewandte Mathematik und Physik 21, 645-647 (1970).
http://dx.doi.org/10.1007/BF01587695
8.
8.C.Y. Wang, “The three-dimensional flow due to a stretching flat surface,” Physics of Fluids 27, 1915-1917 (1984).
http://dx.doi.org/10.1063/1.864868
9.
9.T. Fang and Zhang, “Flow between two stretchable disks an exact solution of the Navier Stokes equations,” International Communications in Heat and Mass Transfer 35, 892-895 (2008).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.04.018
10.
10.X. Sia, L. Lia, L. Zhenga, X. Zhangb, and B. Liua, “The exterior unsteady viscous flow and heat transfer due to a porous expanding stretching cylinder,” Computers and Fluids 105, 280284 (2014).
http://dx.doi.org/10.1016/j.compfluid.2014.09.038
11.
11.P. Carragher and L.J. Crane, “Heat transfer on continuous stretching surface,” Zeitschrift fr Angewandte Mathematik und Mechanik 62, 647-654 (1982).
12.
12.F.K. Tsou, E.M. Sparrow, and R.J. Goldstein, “Flow and heat transfer in the boundary layer on a continuous moving surface,” International Journal of Heat and Mass Transfer 10, 219-235 (1967).
http://dx.doi.org/10.1016/0017-9310(67)90100-7
13.
13.P.S. Gupta and A.S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” The Canadian Journal of Chemical Engineering 55, 744-746 (2009).
http://dx.doi.org/10.1002/cjce.5450550619
14.
14.B.K. Dutta, P. Roy, and A.S. Gupta, “Temperature field in the flow over stretching sheet with uniform heat flux,” International Communications in Heat Transfer 12, 89-94 (1985).
http://dx.doi.org/10.1016/0735-1933(85)90010-7
15.
15.A. Ishak, R. Nazar, and I. Pop, “Heat transfer over a stretching surface with variable heat flux in micropolar fluids,” Physics Letters A 5, 559 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.08.003
16.
16.S. Nadeem, A. Hussain, and M. Khan, “HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet,” Communications in Non-linear Science and Numerical Simulation 15, 475 (2010).
http://dx.doi.org/10.1016/j.cnsns.2009.04.037
17.
17.Y. Rao, Y. Feng, B. Li, and B. Weigand, “Experimental and numerical study of heat transfer and flow friction in channels with dimples of different shapes,” Journal of Heat Transfer 137, 031901 (2015).
http://dx.doi.org/10.1115/1.4029036
18.
18.G.B. Rybchinskaya and S.A. Kovalev, “Prediction of the stability of pool boiling heat transfer to finite disturbances,” International Journal of Heat Mass Transfer 21, 694-700 (1978).
19.
19.H.C. Unal, “Temperature distributions in fins with uniform and non-uniform heat generation and non-uniform heat transfer coefficient,” International Journal of Heat Mass Transfer 30, 1467-1477 (1987).
20.
20.H.C. Unal, “The effect of the boundary conditions at a fin tip on the performance of the fin with and without heat generation,” International Journal Heat Mass Transfer 31, 1483-1496 (1988).
http://dx.doi.org/10.1016/0017-9310(88)90257-8
21.
21.T.R. Mahapatraa, D. Pala, and S. Mondalb, “Mixed convection flow in an inclined enclosure under magnetic field with thermal radiation and heat generation,” International Communications in Heat and Mass Transfer 41, 47-56 (2013).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.10.028
22.
22.M. Torabi and K. Zhang, “Heat transfer and thermodynamic performance of convective–radiative cooling double layer walls with temperature-dependent thermal conductivity and internal heat generation,” Energy Conversion and Management 89, 1223 (2014).
http://dx.doi.org/10.1016/j.enconman.2014.09.032
23.
23.T. Salahuddin, M.Y. Malik, Arif Hussain, S. Bilal, and M. Awais, “Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity,” AIP Advances 5, 127103 (2015).
http://dx.doi.org/10.1063/1.4937366
24.
24.S. Nadeem, S.T. Hussain, and Changhoon Lee, “Flow of a Williamson fluid over a stretching sheet,” Brazilian Journal of Chemical Engineering 30, 619-625 (2013).
http://dx.doi.org/10.1590/S0104-66322013000300019
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4943398
Loading
/content/aip/journal/adva/6/3/10.1063/1.4943398
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4943398
2016-03-02
2016-09-28

Abstract

In this article, Williamson fluid flow and heat transfer over a stretching cylinder is discussed. The thermal conductivity is assumed to be vary linearly with temperature. Heat generation/absorption effects are also taken into account. Modeled partial differential equations are converted into ordinary differential form by using appropriate transformations. Shooting method in conjunction with Runge-Kutta-Fehlberg method is used to find the solution of the problem. Moreover, the effects of different flow parameters , , , and on velocity and temperature profiles are shown graphically. Local Nusselt number and skin friction coefficient are shown in tabular and graphical form.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4943398.html;jsessionid=32CjJzuEBuUVyClcmYYSmqp0.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4943398&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4943398&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4943398'
Right1,Right2,Right3,