Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4943399
1.
1.J. Chen, W. Tang, L. Xin, and Q. Shi, Applied Physics A 102, 213-217 (2010).
http://dx.doi.org/10.1007/s00339-010-5943-2
2.
2.S.-C. Chiu and Y.-Y. Li, Journal of Crystal Growth 311, 1036-1041 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.11.099
3.
3.K. Dong-Wan, C. Young-Jin, C. Kyoung Jin, P. Jae-Gwan, P. Jae-Hwan, M. P. Sergei, D. F. Vadim, P. A. Nikolay, I. G. Boris, M. R. Nikolay, and I. R. Alexander, Nanotechnology 19, 225706 (2008).
http://dx.doi.org/10.1088/0957-4484/19/22/225706
4.
4.R. Yakimova, J. R. M. Petoral, G. R. Yazdi, C. Vahlberg, A. L. Spetz, and K. Uvdal, Journal of Physics D: Applied Physics 40, 6435 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S20
5.
5.E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971-1975 (1997).
http://dx.doi.org/10.1126/science.277.5334.1971
6.
6.Y. Ito, K. Takahashi, M. Fujii, and X. Zhang, Heat Transfer—Asian Research 38, 297-312 (2009).
http://dx.doi.org/10.1002/htj.20228
7.
7.M. I. K. Collin and D. J. Rowcliffe, Journal of the American Ceramic Society 84, 1334-1340 (2001).
http://dx.doi.org/10.1111/j.1151-2916.2001.tb00838.x
8.
8.Y. S. Chou and D. J. Green, Journal of the European Ceramic Society 14, 303-311 (1994).
http://dx.doi.org/10.1016/0955-2219(94)90067-1
9.
9.H. Z. Wang, L. Gao, and J. K. Guo, Ceramics International 26, 391-396 (2000).
http://dx.doi.org/10.1016/S0272-8842(99)00069-3
10.
10.A. R. Moradkhani, H. R. Baharvandi, A. Vafaeesefat, and M. Tajdari, International Journal of Advanced Design and Manufacturing Technology 5, 7 (2012).
11.
11.D. Sciti, J. Vicens, and A. Bellosi, Journal of Materials Science 37, 3747-3758.
http://dx.doi.org/10.1023/A:1016577728915
12.
12.N. Jiraborvornpongsa, M. Imai, K. Yoshida, and T. Yano, Journal of Materials Science 48, 7022-7027 (2013).
http://dx.doi.org/10.1007/s10853-013-7511-6
13.
13.G. Yan, F. Zhang, Y. Niu, F. Yang, X. Liu, L. Wang, W. Zhao, G. Sun, and Y. Zeng, Applied Surface Science 353, 744-749 (2015).
http://dx.doi.org/10.1016/j.apsusc.2015.06.172
14.
14.H.-K. Seong, H.-J. Choi, S.-K. Lee, J.-I. Lee, and D.-J. Choi, Applied Physics Letters 85, 1256-1258 (2004).
http://dx.doi.org/10.1063/1.1781749
15.
15.C. Klingshirn, in Optical Properties. Part 1, edited by C. Klingshirn (Springer, Berlin Heidelberg, 2001), Vol. 34C1, pp. 96-96.
16.
16.M. Shur, S. Rumyantsev, and M. E. Levinshtein, SiC Materials and Devices (World Scientific, 2007).
17.
17.J. Gubicza, T. Ungár, Y. Wang, G. Voronin, C. Pantea, and T. W. Zerda, Diamond and Related Materials 15, 1452-1456 (2006).
http://dx.doi.org/10.1016/j.diamond.2005.10.064
18.
18.C. Kittel, Introduction to solid state physics (Wiley, Hoboken, NJ, 2005).
19.
19.S. Adachi, Handbook on Physical Properties of Semiconductors (Springer US, 2004).
20.
20.G. Zhang, H. Liao, H. Yu, V. Ji, W. Huang, S. Mhaisalkar, and C. Coddet, Surface and Coatings Technology 200, 6690-6695 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2005.10.006
21.
21.N. G. Wright and A. B. Horsfall, Journal of Physics D: Applied Physics 40, 6345 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S17
22.
22.S. M. Pimenov, V. D. Frolov, A. V. Kudryashov, M. M. Lamanov, N. P. Abanshin, B. I. Gorfinkel, D. W. Kim, Y. J. Choi, J. H. Park, and J. G. Park, Diamond and Related Materials 17, 758-763 (2008).
http://dx.doi.org/10.1016/j.diamond.2007.08.016
23.
23.G. L. HARRIS, Materials Science Research Center of Excellence (Howard university, Washington DC, 1953), p. 77.
24.
24.Z. C. Feng, Springer Series in Materials Science 73 (2004).
http://dx.doi.org/10.1007/978-3-662-09877-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4943399
Loading
/content/aip/journal/adva/6/3/10.1063/1.4943399
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4943399
2016-03-02
2016-09-30

Abstract

In this study we report thermal evaporation technique as a simple method for the growth of 4H silicon carbide on p-type silicon substrate. A mixture of Si and Cpowder of high purity (99.99%) was evaporated from molybdenumboat. The as grown film was characterized by XRD,FTIR, UV-Vis Spectrophotometer and Hall Measurements. The XRD pattern displayed four peaks at 2Θ angles 28.550, 32.700, 36.100 and 58.900 related to Si (1 1 1), 4H-SiC (1 0 0), 4H-SiC (1 1 1) and 4H-SiC (2 2 2), respectively. FTIR, UV-Vis spectrophotometer and electrical properties further strengthened the 4H-SiC growth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4943399.html;jsessionid=xqRw0EK5SMT_C-2xoQq-9Zu1.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4943399&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4943399&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4943399'
Right1,Right2,Right3,