Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanotechnology 22, 254002 (2011).
2.G. I. Meijer, Science 319, 1625 (2008).
3.C. H. Ho, C. L. Hsu, C. C. Chen, J. T. Liu, C. S. Wu, C. C. Huang, C. Hu, and F. L. Yang, IEEE Int. Electron Dev. Meet. 2010, 19.1.1.
4.R. Waser and M. Aono, Nature Materials 6, 833 (2007).
5.B. Magyari-Kope, M. Tendulkar, S. G. Park, H. D. Lee, and Y. Nishi, Nanotechnology 22, 254029 (2011).
6.H. J. Wang, C. W. Zou, L. Zhou, C. X. Tian, and D. J. Fu, Microelectron. Eng. 91, 144 (2012).
7.L. F. Liu, Y. S. Chen, J. F. Kang, Y. Wang, D. D. Han, X. Y. Liu, and X. Zhang, Semiconductor Sci. and Technol. 26, 115009 (2011).
8.H. B. Zhao, H. L. Tu, F. Wei, X. Q. Zhang, Y. H. Xiong, and J. Du, Solid-State Electron. 89, 12 (2013).
9.A. Chiyui, K. Seyoung, T. Gokmen, O. Dial, M. Ritter, and H. S. P. Wong, IEEE Int. Symposium on VLSI Technol., Systems and Appl. (VLSI-TSA) 2014, 1.
10.Y. Y. Chen, B. Govoreanu, L. Goux, R. Degraeve, A. Fantini, G. S. Kar, D. J. Wouters, G. Groeseneken, J. A. Kittl, M. Jurczak, and L. Altimime, IEEE Trans. on Electron Devices 59, 3243 (2012).
11.P. C. Tsai, C. F. Tseng, C. W. Yang, I. C. Kuo, Y. L. Chou, and J. W. Lee, Surface and Coatings Technol. 228(Supplement 1), S11 (2013).
12.Z. Chen, G. Ji, N. Prud’homme, A. Addad, V. Ji, J. Chevalier, and G. Bernard-Granger, Scripta Materialia 68, 559 (2013).
13.D. H. Yoon, S. J. Kim, J. Jung, S. J. Heo, and H. J. Kim, Appl. Phys. Lett. 104, 093508 (2014).
14.T. Fujii, M. Arita, K. Hamada, Y. Takahashi, and N. Sakaguchi, J. Appl. Phys. 113, 083701 (2013).
15.M. C. Wu, T. H. Wu, and T. Y. Tseng, J. Appl. Phys. 111, 014505 (2012).
16.D. Panda and T. Y. Tseng, Thin Solid Films 531, 1 (2013).
17.M. C. Wu, Y. W. Lin, W. Y. Jang, C. H. Lin, and T. Y. Tseng, IEEE Electron Device Lett. 32, 1026 (2011).
18.T. Y. Lin, Master Thesis, Feng Chia University, 2012.
19.S. Y. Wang, D. Y. Lee, T. Y. Huang, J. W. Wu, and T. Y. Tseng, Nanotechnology 21, 495201 (2010).
20.W. Guan, S. Long, R. Jia, and M. Liu, Appl. Phys. Lett. 91, 062111 (2007).
21.D. Y. Lee and T. Y. Tseng, IEEE Electron Device Lett. 33, 803 (2012).
22.D. C. Gilmer, G. Bersuker, H. Y. Park, C. Park, B. Butcher, W. Wang, P. D. Kirsch, and R. Jammy, IEEE Int. Memory Workshop (IMW) 2011, 1.
23.S. Y. Wang, D. Y. Lee, T. Y. Tseng, and C. Y. Lin, Appl. Phys. Lett. 95, 112904 (2009).
24.C. L. Lin, C. C. Tang, S. C. Wu, P. C. Juan, and T. K. Kang, Microelectron. Eng. 136, 15 (2015).
25.C. Chen, F. Pan, Z. S. Wang, J. Yang, and F. Zeng, J. Appl. Phys. 111, 013702 (2012).
26.F. Yang, M. Wei, and H. Deng, J. Appl. Phys. 114, 134502 (2013).
27.M. H. Tang, B. Jiang, Y. G. Xiao, Z. Q. Zeng, Z. P. Wang, J. C. Li, and J. He, Microelectron. Eng. 93, 35 (2012).
28.T. H. Yeh, R. D. Lin, B. R. Cherng, and J. S. Cherng, Jpn. J. Appl. Phys. 54, 01AD01 (2015).
29.Z. Ji, Q. Mao, and W. Ke, Solid State Communications 150, 1919 (2010).
30.S. Lee, H. Kim, J. Park, and K. Yong, J. Appl. Phys. 108, 076101 (2010).
31.D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo, and I. K. Yoo, IEEE Electron Device Lett. 26, 719 (2005).
32.B. Sun, Y. X. Liu, L. F. Liu, N. Xu, Y. Wang, X. Y. Liu, R. Q. Han, and J. F. Kang, J. Appl. Phys. 105, 061630 (2009).
33.Y. Li, S. Long, M. Zhang, Q. Liu, L. Shao, S. Zhang, Y. Wang, Q. Zuo, S. Liu, and M. Liu, IEEE Electron Device Lett. 31, 117 (2010).
34.C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, IEEE Electron Device Lett. 28, 366 (2007).
35.S. Y. Wang, C. H. Tsai, D. Y. Lee, C. Y. Lin, C. C. Lin, and T. Y. Tseng, Microelectron. Eng. 88, 1628 (2011).
36.S. Yu, IEEE Int. Symp. Circuits and Systems (ISCAS) 2014, 2017.
37.V. N. Zhitomirsky, S. K. Kim, L. Burstein, and R. L. Boxman, Appl. Surf. Sci. 256, 6246 (2010).
38.B. Gao, J. F. Kang, Y. S. Chen, F. F. Zhang, B. Chen, P. Huang, L. F. Liu, X. Y. Liu, Y. Y. Wang, X. A. Tran, Z. R. Wang, H. Y. Yu, and A. Chin, IEEE Int. Electron Dev. Meet. 2011, 17.4.1.
39.B. Chen, Y. Lu, B. Gao, Y. H. Fu, F. F. Zhang, P. Huang, Y. S. Chen, L. F. Liu, X. Y. Liu, J. F. Kang, Y. Y. Wang, Z. Fang, H. Y. Yu, X. Li, X. P. Wang, N. Singh, G. Q. Lo, and D. L. Kwong, IEEE Int. Electron Dev. Meet. 2011, 12.3.1.
40.D. Y. Lee, T. L. Tsai, and T. Y. Tseng, Appl. Phys. Lett. 103, 032905 (2013).
41.U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego, and M. Fanciulli, IEEE Int. Electron Dev. Meet. 2007, 775.

Data & Media loading...


Article metrics loading...



This study investigates the performance of unipolar-switched ZrO RRAM, using an oxygen-deficient and amorphous ZrO capping in a sandwich stack Al/ZrO/ZrO/ZrO/Al structure. Superior high and low resistance switching and a resistance ratio (HRS/LRS) greater than 10 showed excellent dc endurance of 7378 switching cycles and 3.8 × 104 cycles in pulse switching measurements. Recovery behavior, observed in the I-V curve for the SET process (or HRS), led to HRS fluctuations and instability. A new resistance switching model for the stacked ZrO RRAM is proposed in this paper. In this model, oxygen-deficient and amorphous ZrOfilm, capped on polycrystalline ZrOfilm, plays a key role and acts as an oxygen reservoir in making the oxygen ions redox easily for the SET process and in facilitating re-oxidation for the RESET process, resulting in excellent endurance. By improving the stability and recovery phenomena, engineering parameters of the current control may play a critical role during switching, and they can be correlated to the film’s thickness and the oxygen content of the amorphous ZrOfilm.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd