Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4943509
1.
1.K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.A. Phaedon, Nano Lett 10, 4285 (2010).
http://dx.doi.org/10.1021/nl102824h
3.
3.F. Bonaccoroso, Z. Sun, H. Hasan, and A.C. Ferrari, Nature Photonics 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
4.
4.M.V. Kamalakar, C. Groenveld, A. Dankert, and S.P. Dash, Nature Commun. 6, 6766 (2015).
http://dx.doi.org/10.1038/ncomms7766
5.
5.J. Zhu, D. Yang, Z. Yin, Q. Yan, and H. Zhang, Small 10, 3480 (2014).
http://dx.doi.org/10.1002/smll.201303202
6.
6.J.H. Bong, S.J. Yoon, A. Yoon, W.S. Hwang, and B.J. Cho, Appl. Phys. Lett. 106, 063112 (2015).
http://dx.doi.org/10.1063/1.4908559
7.
7.W.R. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, and F. Braet, Angew. Chem. Int. Ed. 49, 2114 (2010).
http://dx.doi.org/10.1002/anie.200903463
8.
8.S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhanen, ACS Nano 7, 11166 (2013).
http://dx.doi.org/10.1021/nn404889b
9.
9.S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, J. Phys. Chem. C 117, 10683 (2013).
http://dx.doi.org/10.1021/jp3085759
10.
10.X. Feng, W. Qian, K. Zhao, A. Deng, and J. Li, Sens. Actuators B 215, 316 (2015).
http://dx.doi.org/10.1016/j.snb.2015.03.068
11.
11.W. Xuan, X. He, J. Chen, W. Wang, X. Wang, Y. Xu, Z. Xu, Y.Q. Fu, and J.K. Luo, Nanoscale 7, 7430 (2015).
http://dx.doi.org/10.1039/C5NR00040H
12.
12.L.K. Baxter, Capacitive Sensors: Design and Application (Wiley-IEEE Press, 1996).
13.
13.W.Y. Du, Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies, first ed. (CRC Press, 2014).
14.
14.H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, and M.S. Dresslhaus, Sci. Rep. 3, 2714 (2013).
http://dx.doi.org/10.1038/srep02714
15.
15.H.P. Hong, K.H. Jung, J.H. Kim, K.H. Kwon, C.J. Lee, K.N. Yun, and N.K. Min, Nanotechnology 24, 085501 (2013).
http://dx.doi.org/10.1088/0957-4484/24/8/085501
16.
16.G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, and H. Bianco-Peled, Carbon 43, 641 (2005).
http://dx.doi.org/10.1016/j.carbon.2004.10.035
17.
17.T. Szabó, E. Tombácz, E. Illés, and I. Dékány, Carbon 44, 537 (2006).
http://dx.doi.org/10.1016/j.carbon.2005.08.005
18.
18.D. Li, M.B. Müller, S. Gilje, R.B. Kaner, and G.G. Wallace, Nature Nanotechnol. 3, 101 (2008).
http://dx.doi.org/10.1038/nnano.2007.451
19.
19.H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).
http://dx.doi.org/10.1021/nn700375n
20.
20.D. Zhang, J. Tong, B. Xia, and Q. Xue, Sens. Actuators B 203, 263 (2014).
http://dx.doi.org/10.1016/j.snb.2014.06.116
21.
21.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.02.034
22.
22.S.J. Park and R.S. Ruoff, Nature Nanotechnol. 4, 217 (2009).
http://dx.doi.org/10.1038/nnano.2009.58
23.
23.W.K. Park, H.K. Kim, T.Y. Kim, Y.N. Kim, S.M. Yoo, S.D. Kim, D.H. Yoon, and W.S. Yang, Carbon 83, 217 (2015).
http://dx.doi.org/10.1016/j.carbon.2014.11.024
24.
24.S. Reich and C. Thomsen, Phil. Trans. R. Soc. Lond. A 362, 2271 (2004).
http://dx.doi.org/10.1098/rsta.2004.1454
25.
25.B. Hirschorn, M.E. Orazsem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiam, J. Electrochem. Soc. 157, C452 (2010).
http://dx.doi.org/10.1149/1.3499564
26.
26.D. Zhang, J. Tong, B. Xia, and Q. Xue, Sensors and Actuators B: Chemcial 203, 263 (2014).
http://dx.doi.org/10.1016/j.snb.2014.06.116
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4943509
Loading
/content/aip/journal/adva/6/3/10.1063/1.4943509
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4943509
2016-03-03
2016-09-30

Abstract

The oxidationproperties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4943509.html;jsessionid=HSnQRvkqlXl4ASYlNg8MIEst.x-aip-live-06?itemId=/content/aip/journal/adva/6/3/10.1063/1.4943509&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4943509&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4943509'
Right1,Right2,Right3,