Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4943529
1.
1.R.R. Willey, Appl. Opt. 50, C274 (2011).
http://dx.doi.org/10.1364/AO.50.00C274
2.
2.A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 28, 770 (2011).
http://dx.doi.org/10.1364/JOSAA.28.000770
3.
3.B.U. Ye, B.J. Kim, Y.H. Song, J.H. Son, H.K. Yu, M.H. Kim, J.L. Lee, and J.M. Baik, Adv. Funct. Mater. 22, 632 (2012).
http://dx.doi.org/10.1002/adfm.201101987
4.
4.D. Poitras and J.A. Dobrowolski, Appl. Opt. 43, 1286 (2004).
http://dx.doi.org/10.1364/AO.43.001286
5.
5.Y.T. Lee, Y.M. Song, S.J. Jang, and J.S. Yu, Small 6, 984 (2010).
http://dx.doi.org/10.1002/smll.201000079
6.
6.A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01780-5
7.
7.K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, Opt. Lett. 26, 1642 (2001).
http://dx.doi.org/10.1364/OL.26.001642
8.
8.W.-L. Min, B. Jiang, and P. Jiang, Adv. Mater. 20, 3914 (2008).
http://dx.doi.org/10.1002/adma.200800791
9.
9.Y.H. Kang, S.S. Oh, Y.-S. Kim, and C.-G. Choi, Microelectron. Eng. 87, 125 (2010).
http://dx.doi.org/10.1016/j.mee.2009.06.006
10.
10.S. Chattopadhyay, Y.F. Huang, Y.J. Jen, a. Ganguly, K.H. Chen, and L.C. Chen, Mater. Sci. Eng. R Reports 69, 1 (2010).
http://dx.doi.org/10.1016/j.mser.2010.04.001
11.
11.R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, Laser Photonics Rev. 6, 641 (2012).
http://dx.doi.org/10.1002/lpor.201100011
12.
12.Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
http://dx.doi.org/10.1038/nnano.2007.389
13.
13.Y.M. Song, E.S. Choi, J.S. Yu, and Y.T. Lee, Opt. Express 17, 20991 (2009).
http://dx.doi.org/10.1364/OE.17.020991
14.
14.Y.M. Song, G.C. Park, S.J. Jang, J.H. Ha, J.S. Yu, and Y.T. Lee, Opt. Express 19 Suppl 2, A157 (2011).
http://dx.doi.org/10.1364/OE.19.00A157
15.
15.E.K. Kang, E. Kwon, J.W. Min, Y.M. Song, and Y.T. Lee, 02, 4 (2015).
16.
16.Y.M. Song, Y. Jeong, C. Il Yeo, and Y.T. Lee, Opt. Express 20, A916 (2012).
http://dx.doi.org/10.1364/OE.20.00A916
17.
17.W.S. Cheung, Y.F. Cheung, H.T. Chen, R.S.Y. Hui, and E. Waffenschmidt, Opt. Express 23, 15021 (2015).
http://dx.doi.org/10.1364/OE.23.015021
18.
18.F. Falco, T. Tamir, and K.M. Leung, J. Opt. Soc. Am. A 21, 1621 (2004).
http://dx.doi.org/10.1364/JOSAA.21.001621
19.
19.Y.M. Song, E.S. Choi, G.C. Park, C.Y. Park, S.J. Jang, and Y.T. Lee, Appl. Phys. Lett. 97, 9 (2010).
20.
20.Y.T. Lee, Y.M. Song, J.H. Jang, J.C. Lee, and E.K. Kang, Sol. Energy Mater. Sol. Cells 101, 73 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.02.013
21.
21.E.S. Choi, Y.M. Song, G.C. Park, and Y.T. Lee, J. Nanosci. Nanotechnol. 11, 1342 (2011).
http://dx.doi.org/10.1166/jnn.2011.3378
22.
22.C. Lin, N. Huang, and M.L. Povinelli, Opt. Express 20, 125 (2012).
http://dx.doi.org/10.1364/OE.20.00A125
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4943529
Loading
/content/aip/journal/adva/6/3/10.1063/1.4943529
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4943529
2016-03-03
2016-09-27

Abstract

We report theoretical and experimental analysis of antireflective subwavelength structures (SWSs) on GaP substrates to enhance the light output with a uniform light distribution of AlGaInP-based red light-emitting diodes(LEDs). Scaling issues on the optical performance are analyzed by the calculation results from finite-difference time-domain(FDTD) and rigorous coupled-wave analysis (RCWA) methods. The optical simulation reveals that SWSs with a period of 100–150 nm achieve highest optical output power, while maintaining a uniform light field distribution, in the subwavelength regime. To validate our theoretical results, disordered SWSs with a tapered shape were fabricated on a GaP layer of AlGaInP red LEDs by lithography-free dry etching of Ag nanoparticles. The SWS-integrated LED shows a uniform light output distribution with an improved light output power compared with the conventional LED.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4943529.html;jsessionid=Kp5FvQNfsE5bAhEnoSYWnkqP.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4943529&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4943529&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4943529'
Right1,Right2,Right3,