Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4943548
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666669 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature materials 6, 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
3.
3.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109162 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
4.
4.K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin mos2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
5.
5.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature nanotechnology 6, 147150 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
6.
6.L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nature nanotechnology DOI:10.1038/nnano.2014.35 (2014).
http://dx.doi.org/10.1038/nnano.2014.35
7.
7.H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomnek, and P. D. Ye, “Phosphorene: An unexplored 2d semiconductor with a high hole mobility,” ACS Nano 8, 40334041 (2014).
http://dx.doi.org/10.1021/nn501226z
8.
8.W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, and Z. Zhang, “Plasma-assisted fabrication of monolayer phosphorene and its raman characterization,” Nano Research 17.
9.
9.J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, and P. O’Brien, “Production of few-layer phosphorene by liquid exfoliation of black phosphorus,” Chemical Communications 50, 1333813341 (2014).
http://dx.doi.org/10.1039/C4CC05752J
10.
10.E. D. e. Damien Hanlon and Claudia Backes, “Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics,” Nature Communications 6 (2015).
11.
11.S. Rodin, A. , A. Carvalho, H. Castro Neto, and A. , “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112, 176801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.176801
12.
12.T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90, 075434 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.075434
13.
13.H. Lv, W. Lu, D. Shao, and Y. Sun, “Enhanced thermoelectric performance of phosphorene by strain-induced band convergence,” Physical Review B 90, 085433 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.085433
14.
14.R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, and L. Yang, “Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene,” Nano letters 14, 63936399 (2014).
http://dx.doi.org/10.1021/nl502865s
15.
15.A. Ramasubramaniam and A. R. Muniz, “Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons,” Phys. Rev. B 90, 085424 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.085424
16.
16.H. Y. Lv, W. J. Lu, D. F. Shao, and Y. P. Sun, “Enhanced thermoelectric performance of phosphorene by strain-induced band convergence,” Phys. Rev. B 90, 085433 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.085433
17.
17.J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nature communications 5 (2014).
18.
18.R. Fei and L. Yang, “Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus,” Nano Letters 14, 28842889 (2014).
http://dx.doi.org/10.1021/nl500935z
19.
19.S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band-gap transitions,” Angewandte Chemie (2015).
20.
20.C. Kamal and M. Ezawa, “Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems,” Physical Review B 91, 085423 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.085423
21.
21.L. Kou, Y. Ma, X. Tan, T. Frauenheim, A. Du, and S. Smith, “Structural and electronic properties of layered arsenic and antimony arsenide,” The Journal of Physical Chemistry C 119, 69186922 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b02096
22.
22.Z. Zhu, J. Guan, and D. Tománek, “Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: A computational study,” Physical Review B 91, 161404 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.161404
23.
23.Z. Zhu and D. Tománek, “Semiconducting layered blue phosphorus: A computational study,” Phys. Rev. Lett. 112, 176802 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.176802
24.
24.P. Smith, A. Leadbetter, and A. Apling, “The structures of orthorhombic and vitreous arsenic,” Philosophical Magazine 31, 5764 (1975).
http://dx.doi.org/10.1080/14786437508229285
25.
25.Z. Zhang, J. Xie, D. Yang, Y. Wang, M. Si, and D. Xue, “Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene,” Applied Physics Express 8, 055201 (2015).
http://dx.doi.org/10.7567/APEX.8.055201
26.
26.J. Han, J. Xie, Z. Zhang, D. Yang, M. Si, and D. Xue, “Negative Poissons ratios in few-layer orthorhombic arsenic: First-principles calculations,” Applied Physics Express 8, 041801 (2015).
http://dx.doi.org/10.7567/APEX.8.041801
27.
27.M. Yang and W.-M. Liu, “Ultra-high mechanical stretchability and controllable topological phase transitions in two-dimensional arsenic,” e-print arXiv:1501.04350 (2015).
28.
28.X. Peng, Q. Wei, and A. Copple, “Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene,” Phys. Rev. B 90, 085402 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.085402
29.
29.X. Han, H. Morgan Stewart, S. A. Shevlin, C. R. A. Catlow, and Z. X. Guo, “Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons,” Nano letters 14, 46074614 (2014).
http://dx.doi.org/10.1021/nl501658d
30.
30.W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133A1138 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
31.
31.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
32.
32.G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 17581775 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
33.
33.G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science 6, 1550 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4943548 for details of the evolution of band gaps and effective mass of arsenene under strain. The effect of the atomic distortion on the relaxed structures and phonon dispersion are presented as well.[Supplementary Material]
35.
35.H.-J. Cui, X.-L. Sheng, Q.-B. Yan, Q.-R. Zheng, and G. Su, “Strain-induced dirac cone-like electronic structures and semiconductor-semimetal transition in graphdiyne,” Phys. Chem. Chem. Phys. 15, 81798185 (2013).
http://dx.doi.org/10.1039/c3cp44457k
36.
36.G. Wang, M. Si, A. Kumar, and R. Pandey, “Strain engineering of dirac cones in graphyne,” Applied Physics Letters 104 (2014).
37.
37.R. Fei, V. Tran, and L. Yang, “Topologically protected dirac cones in compressed bulk black phosphorus,” Physical Review B 91, 195319 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.195319
38.
38.C. Wang, Q. Xia, Y. Nie, and G. Guo, “Strain-induced gap transition and anisotropic dirac-like cones in monolayer and bilayer phosphorene,” Journal of Applied Physics 117, 124302 (2015).
http://dx.doi.org/10.1063/1.4916254
39.
39.Z. Xiang, G. Ye, C. Shang, B. Lei, N. Wang, K. Yang, D. Liu, F. Meng, X. Luo, L. Zou et al., “Pressure-induced electronic transition in black phosphorus,” Physical review letters 115, 186403 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.186403
40.
40.Q. Liu, X. Zhang, L. Abdalla, A. Fazzio, and A. Zunger, “Switching a normal insulator into a topological insulator via electric field with application to phosphorene,” Nano letters 15, 12221228 (2015).
http://dx.doi.org/10.1021/nl5043769
41.
41.K. Dolui and S. Y. Quek, “Quantum-confinement and structural anisotropy result in electrically-tunable dirac cone in few-layer black phosphorous,” Scientific Reports 5, 11699 (2015).
http://dx.doi.org/10.1038/srep11699
42.
42.J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic dirac semimetal state in black phosphorus,” Science 349, 723726 (2015).
http://dx.doi.org/10.1126/science.aaa6486
43.
43.V. Tran and L. Yang, “Scaling laws for the band gap and optical response of phosphorene nanoribbons,” Phys. Rev. B 89, 245407 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.245407
44.
44.P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab initio gw many-body effects in graphene,” Phys. Rev. Lett. 101, 226405 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.226405
45.
45.H. Morgan Stewart, S. A. Shevlin, C. R. A. Catlow, and Z. X. Guo, “Compressive straining of bilayer phosphorene leads to extraordinary electron mobility at a new conduction band edge,” Nano letters 15, 20062010 (2015).
http://dx.doi.org/10.1021/nl504861w
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4943548
Loading
/content/aip/journal/adva/6/3/10.1063/1.4943548
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4943548
2016-03-04
2016-09-26

Abstract

The electronic properties of two-dimensional puckered arsenene have been investigated using first-principles calculations. The effective mass of electrons exhibits highly anisotropic dispersion in intrinsic puckered arsenene. Futhermore, we find that out-of-plane strain is effective in tuning the band gap, as the material undergoes the transition into a metal from an indirect gap semiconductor. Remarkably, we observe the emergence of Dirac-like cone with in-plane strain. Strain modulates not only the band gap of monolayer arsenene, but also the effective mass. Our results present possibilities for engineering the electronic properties of two-dimensional puckered arsenene and pave a way for tuning carrier mobility of future electronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4943548.html;jsessionid=Lqo-zTN2uCP_0QvClTIZVAj7.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4943548&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4943548&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4943548'
Right1,Right2,Right3,