Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666669 (2004).
2.A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature materials 6, 183191 (2007).
3.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109162 (2009).
4.K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin mos2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
5.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature nanotechnology 6, 147150 (2011).
6.L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nature nanotechnology DOI:10.1038/nnano.2014.35 (2014).
7.H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomnek, and P. D. Ye, “Phosphorene: An unexplored 2d semiconductor with a high hole mobility,” ACS Nano 8, 40334041 (2014).
8.W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, and Z. Zhang, “Plasma-assisted fabrication of monolayer phosphorene and its raman characterization,” Nano Research 17.
9.J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, and P. O’Brien, “Production of few-layer phosphorene by liquid exfoliation of black phosphorus,” Chemical Communications 50, 1333813341 (2014).
10.E. D. e. Damien Hanlon and Claudia Backes, “Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics,” Nature Communications 6 (2015).
11.S. Rodin, A. , A. Carvalho, H. Castro Neto, and A. , “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112, 176801 (2014).
12.T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90, 075434 (2014).
13.H. Lv, W. Lu, D. Shao, and Y. Sun, “Enhanced thermoelectric performance of phosphorene by strain-induced band convergence,” Physical Review B 90, 085433 (2014).
14.R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, and L. Yang, “Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene,” Nano letters 14, 63936399 (2014).
15.A. Ramasubramaniam and A. R. Muniz, “Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons,” Phys. Rev. B 90, 085424 (2014).
16.H. Y. Lv, W. J. Lu, D. F. Shao, and Y. P. Sun, “Enhanced thermoelectric performance of phosphorene by strain-induced band convergence,” Phys. Rev. B 90, 085433 (2014).
17.J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nature communications 5 (2014).
18.R. Fei and L. Yang, “Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus,” Nano Letters 14, 28842889 (2014).
19.S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band-gap transitions,” Angewandte Chemie (2015).
20.C. Kamal and M. Ezawa, “Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems,” Physical Review B 91, 085423 (2015).
21.L. Kou, Y. Ma, X. Tan, T. Frauenheim, A. Du, and S. Smith, “Structural and electronic properties of layered arsenic and antimony arsenide,” The Journal of Physical Chemistry C 119, 69186922 (2015).
22.Z. Zhu, J. Guan, and D. Tománek, “Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: A computational study,” Physical Review B 91, 161404 (2015).
23.Z. Zhu and D. Tománek, “Semiconducting layered blue phosphorus: A computational study,” Phys. Rev. Lett. 112, 176802 (2014).
24.P. Smith, A. Leadbetter, and A. Apling, “The structures of orthorhombic and vitreous arsenic,” Philosophical Magazine 31, 5764 (1975).
25.Z. Zhang, J. Xie, D. Yang, Y. Wang, M. Si, and D. Xue, “Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene,” Applied Physics Express 8, 055201 (2015).
26.J. Han, J. Xie, Z. Zhang, D. Yang, M. Si, and D. Xue, “Negative Poissons ratios in few-layer orthorhombic arsenic: First-principles calculations,” Applied Physics Express 8, 041801 (2015).
27.M. Yang and W.-M. Liu, “Ultra-high mechanical stretchability and controllable topological phase transitions in two-dimensional arsenic,” e-print arXiv:1501.04350 (2015).
28.X. Peng, Q. Wei, and A. Copple, “Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene,” Phys. Rev. B 90, 085402 (2014).
29.X. Han, H. Morgan Stewart, S. A. Shevlin, C. R. A. Catlow, and Z. X. Guo, “Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons,” Nano letters 14, 46074614 (2014).
30.W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133A1138 (1965).
31.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868 (1996).
32.G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 17581775 (1999).
33.G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science 6, 1550 (1996).
34.See supplementary material at for details of the evolution of band gaps and effective mass of arsenene under strain. The effect of the atomic distortion on the relaxed structures and phonon dispersion are presented as well.[Supplementary Material]
35.H.-J. Cui, X.-L. Sheng, Q.-B. Yan, Q.-R. Zheng, and G. Su, “Strain-induced dirac cone-like electronic structures and semiconductor-semimetal transition in graphdiyne,” Phys. Chem. Chem. Phys. 15, 81798185 (2013).
36.G. Wang, M. Si, A. Kumar, and R. Pandey, “Strain engineering of dirac cones in graphyne,” Applied Physics Letters 104 (2014).
37.R. Fei, V. Tran, and L. Yang, “Topologically protected dirac cones in compressed bulk black phosphorus,” Physical Review B 91, 195319 (2015).
38.C. Wang, Q. Xia, Y. Nie, and G. Guo, “Strain-induced gap transition and anisotropic dirac-like cones in monolayer and bilayer phosphorene,” Journal of Applied Physics 117, 124302 (2015).
39.Z. Xiang, G. Ye, C. Shang, B. Lei, N. Wang, K. Yang, D. Liu, F. Meng, X. Luo, L. Zou et al., “Pressure-induced electronic transition in black phosphorus,” Physical review letters 115, 186403 (2015).
40.Q. Liu, X. Zhang, L. Abdalla, A. Fazzio, and A. Zunger, “Switching a normal insulator into a topological insulator via electric field with application to phosphorene,” Nano letters 15, 12221228 (2015).
41.K. Dolui and S. Y. Quek, “Quantum-confinement and structural anisotropy result in electrically-tunable dirac cone in few-layer black phosphorous,” Scientific Reports 5, 11699 (2015).
42.J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable band gap and anisotropic dirac semimetal state in black phosphorus,” Science 349, 723726 (2015).
43.V. Tran and L. Yang, “Scaling laws for the band gap and optical response of phosphorene nanoribbons,” Phys. Rev. B 89, 245407 (2014).
44.P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab initio gw many-body effects in graphene,” Phys. Rev. Lett. 101, 226405 (2008).
45.H. Morgan Stewart, S. A. Shevlin, C. R. A. Catlow, and Z. X. Guo, “Compressive straining of bilayer phosphorene leads to extraordinary electron mobility at a new conduction band edge,” Nano letters 15, 20062010 (2015).

Data & Media loading...


Article metrics loading...



The electronic properties of two-dimensional puckered arsenene have been investigated using first-principles calculations. The effective mass of electrons exhibits highly anisotropic dispersion in intrinsic puckered arsenene. Futhermore, we find that out-of-plane strain is effective in tuning the band gap, as the material undergoes the transition into a metal from an indirect gap semiconductor. Remarkably, we observe the emergence of Dirac-like cone with in-plane strain. Strain modulates not only the band gap of monolayer arsenene, but also the effective mass. Our results present possibilities for engineering the electronic properties of two-dimensional puckered arsenene and pave a way for tuning carrier mobility of future electronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd