Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4943673
1.
1.Y. Shiraishi, I. Nakai, T. Tsubata, T. Himeda, and F. Nishikawa, J. Solid State Chem. 133, 587 (1997).
http://dx.doi.org/10.1006/jssc.1997.7615
2.
2.A. Ito, Y. Sato, T. Sanada, M. Hatano, H. Horie, and Y. Osawa, J. Power Sources 196, 6828 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2010.09.105
3.
3.F. de Groot and A. Kotani, Core Level Spectroscopy of Solids (Advances in Condensed Matter Science) (CRC Press Taylor & Francis Group, Boca Raton, FL, 2008).
4.
4.F. M. F. de Groot, J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).
http://dx.doi.org/10.1016/0368-2048(93)02041-J
5.
5.S. Eisebitt, T. Boske, J.-E. Rubensson, and W. Eberhardt, Phys. Rev. B 47, 14103 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.14103
6.
6.H. Wadati, A. J. Achkar, D. G. Hawthorn, T. Z. Regier, M. P. Singh, K. D. Truong, P. Fournier, G. Chen, T. Mizokawa, and G. A. Sawatzky, Appl. Phys. Lett. 100, 193906 (2012).
http://dx.doi.org/10.1063/1.4711801
7.
7.S. Yang, D. Wang, G. Liang, Y. M. Yiu, J. Wang, L. Liu, X. Sun, and T.-K. Sham, Energy Environ. Sic. 5, 7007 (2012).
http://dx.doi.org/10.1039/c2ee03445j
8.
8.A. J. Achkar, T. Z. Regier, H. Wadati, Y.-J. Kim, H. Zhang, and D. G. Hawthorn, Phys. Rev. B 83, 081106 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.081106
9.
9.A. J. Achkar, T. Z. Regier, E. J. Monkman, K. M. Shen, and D. G. Hawthorn, Sci. Rep. 1, 182 (2011).
http://dx.doi.org/10.1038/srep00182
10.
10.S. I. Bokarev, M. Dantz, E. Suljoti, O. Kühn, and E. F. Aziz, Phys. Rev. Lett. 111, 083002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.083002
11.
11.P. Wernet, K. Kunnus, S. Schreck, W. Quevedo, R. Kurian, S. Techert, F. M. F. de Groot, M. Odelius, and A. Fohlisch, J. Phys. Chem. Lett. 3, 3448 (2012).
http://dx.doi.org/10.1021/jz301486u
12.
12.D. Perk and T. Regier, Environ. Sci. Technol. 46, 3163 (2012).
http://dx.doi.org/10.1021/es203816x
13.
13.C. Yogi, D. Takamatsu, K. Yamanaka, H. Arai, Y. Uchimoto, K. Kojima, I. Watanabe, T. Ohta, and Z. Ogumi, J. Power Sources 248, 994 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2013.10.030
14.
14.H. Wadati, D. G. Hawthorn, T. Z. Regier, G. Chen, T. Hitosugi, T. Mizokawa, A. Tanaka, and G. A. Sawatzky, Appl. Phys. Lett. 97, 022106 (2010).
http://dx.doi.org/10.1063/1.3463468
15.
15.E. F. Aziz, M. H. Rittmann-Frank, K. M. Lange, S. Bonhommeau, and M. Chergui, Nature Chem. 2, 853 (2010).
http://dx.doi.org/10.1038/nchem.768
16.
16.T. Z. Regier, A. J. Achkar, D. Peak, J. S. Tse, and D. G. Hawthorn, Nature Chem. 4, 765 (2012).
http://dx.doi.org/10.1038/nchem.1430
17.
17.F. M. F. de Groot, Nature Chem. 4, 766 (2012).
http://dx.doi.org/10.1038/nchem.1431
18.
18.E. F. Aziz, K. M. Lange, S. Bonhommeau, and M. Chergui, Nature Chem. 4, 767 (2012).
http://dx.doi.org/10.1038/nchem.1449
19.
19.R. Kurian, K. Kunnus, P. Wernet, S. M. Butorin, P. Glatzel, and F. M. F. de Groot, J. Phys. Condens. Matter 24, 452201 (2012).
http://dx.doi.org/10.1088/0953-8984/24/45/452201
20.
20.A. Padhi, K. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).
http://dx.doi.org/10.1149/1.1837571
21.
21.Q. M. Zhong, A. Bonakdarpour, M. J. Zhang, Y. Gao, and J. R. Dahn, J. Electrochem. Soc. 144, 205 (1997).
http://dx.doi.org/10.1149/1.1837386
22.
22.F. Du, Z.-F. Huang, C.-Z. Wang, X. Meng, and G. Chen, J. Appl. Phys. 102, 113906 (2007).
http://dx.doi.org/10.1063/1.2821359
23.
23.C. Ban, W.-J. Yin, H. Tang, S.-H. Wei, Y. Yan, and A. C. Dillon, Adv. Energy Mater. 2, 1028 (2012).
http://dx.doi.org/10.1002/aenm.201200085
24.
24.E. Hosono, T. Saito, J. Hoshino, Y. Mizuno, M. Okubo, D. Asakura, K. Kagesawa, D. Nishio-Hamane, T. Kudo, and H. S. Zhou, CrystEngComm 15, 2592 (2013).
http://dx.doi.org/10.1039/c3ce26972h
25.
25.Y. Nanba and K. Okada, J. Phys. Soc. Jpn. 79, 114722 (2010).
http://dx.doi.org/10.1143/JPSJ.79.114722
26.
26.Y. Nanba and K. Okada, J. Electron Spectrosc. Relat. Phenom. 185, 167 (2012).
http://dx.doi.org/10.1016/j.elspec.2012.06.013
27.
27.Y. Nanba, D. Asakura, M. Okubo, Y. Mizuno, T. Kudo, H. S. Zhou, K. Amemiya, J.-H. Guo, and K. Okada, J. Phys. Chem. C 116, 24896 (2012).
http://dx.doi.org/10.1021/jp310328q
28.
28.Y. Nanba, D. Asakura, M. Okubo, H. S. Zhou, K. Amemiya, K. Okada, P.-A. Glans, C. A. Jenkins, E. Arenholz, and J.-H. Guo, Phys. Chem. Chem. Phys. 16, 7031 (2014).
http://dx.doi.org/10.1039/c3cp55471f
29.
29.X. Liu, J. Liu, R. Qiao, Y. Yu, H. Li, L. Suo, Y.-s. Hu, Y.-D. Chuang, G. Shu, F. Chou, T.-C. Weng, D. Nordlund, D. Sokaras, Y. J. Wang, H. Lin, B. Barbiellini, A. Bansil, X. Song, Z. Liu, S. Yan, G. Liu, S. Qiao, T. J. Richardson, D. Prendergast, Z. Hussain, F. M. F. de Groot, and W. Yang, J. Am. Chem. Soc. 134, 13708 (2012).
http://dx.doi.org/10.1021/ja303225e
30.
30.S. Kurosumi, N. Nagamura, S. Toyoda, K. Horiba, H. Kumigashira, M. Oshima, S. Furutsuki, S.-i. Nishimura, A. Yamada, and N. Mizuno, J. Phys. Chem. C 115, 25519 (2011).
http://dx.doi.org/10.1021/jp208069m
31.
31.G. Ghiringhelli, A. Piazzalunga, C. Dallera, G. Trezzi, L. Braicovich, T. Schmitt, V. N. Strocov, R. Betemps, L. Patthey, X. Wang, and M. Grioni, Rev. Sci. Instrum. 77, 113108 (2006).
http://dx.doi.org/10.1063/1.2372731
32.
32.Y. Harada, M. Kobayashi, H. Niwa, Y. Senba, H. Ohashi, T. Tokushima, Y. Horikawa, S. Shin, and M. Oshima, Rev. Sci. Instrum. 83, 013116 (2012).
http://dx.doi.org/10.1063/1.3680559
33.
33.C. Piamonteze, F. M. F. de Groot, H. C. N. Tolentino, A. Y. Ramos, N. E. Massa, J. A. Alonso, and M. J. Martínez-Lope, Phys. Rev. B 71, 020406(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.71.020406
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4943673
Loading
/content/aip/journal/adva/6/3/10.1063/1.4943673
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4943673
2016-03-07
2016-12-09

Abstract

We evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathodematerials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNiMnO, the line shape of the Mn -edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathodematerials, the IPFY XAS is highly effective for the Cr, Mn, and Fe edges and the TFY and PFY modes are useful enough for the Ni edge which is far from the O edge.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4943673.html;jsessionid=0FMOCRI9fTVdM7HSlyLCx7vy.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4943673&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4943673&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4943673'
Right1,Right2,Right3,