Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
2.G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
3.B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev. B 43, 1297 (1991).
4.M. Melzer, D. Makarov, A. Calvimontes, D. Karnaushenko, S. Baunack, R. Kaltofen, Y. Mei, and O. G. Schmidt, Nano Lett. 11, 2522 (2011).
5.M. Melzer, J. I. Monch, D. Makarov, Y. Zabila, G. S. Canon Bermudez, D. Karnaushenko, S. Baunack, F. Bahr, C. Yan, M. Kaltenbrunner, and O. G. Schmidt, Adv. Mater. 27, 1274 (2015).
6.S. Rizwan, S. Zhang, T. Yu, Y. G. Zhao, and X. F. Han, J. Appl. Phys. 113, 023911 (2013).
7.H. J. Mamin, B. A. Gurney, D. R. Wilhoit, and V. S. Speriosu, Appl. Phys. Lett. 72, 3220 (1998).
8.T. Duenas, A. Sehrbrock, M. Löhndorf, A. Ludwig, J. Wecker, P. Grünberg, and E. Quandt, J. Magn. Magn. Mater. 242-245, 1132 (2002).
9.M. Löhndorf, T. Duenas, A. Ludwig, M. Rührig, J. Wecker, D. Burgler, P. Grünberg, and E. Quandt, IEEE Trans. Magn. 38, 2826 (2002).
10.M. Löhndorf, T. Duenas, M. Tewes, E. Quandt, M. Rührig, and J. Wecker, Appl. Phys. Lett. 81, 313 (2002).
11.M. Löhndorf, S. Dokupil, J. Wecker, M. Rührig, and E. Quandt, J. Magn. Magn. Mater. 272-276, 2023 (2004).
12.S. Dokupil, M. T. Bootsmann, S. Stein, M. Löhndorf, and E. Quandt, J. Magn. Magn. Mater. 290-291, 795 (2005).
13.T. Uhrmann, L. Bär, T. Dimopoulos, N. Wiese, M. Rührig, and A. Lechner, J. Magn. Magn. Mater. 307, 209 (2006).
14.X. Y. Xu, M. Li, J. G. Hu, J. Dai, and W. W. Xia, J. Appl. Phys. 108, 033916 (2010).
15.B. Özkaya, S. R. Saranu, S. Mohanan, and U. Herr, Phys. status solidi (a) 205, 1876 (2008).
16.D. Meyners, T. von Hofe, M. Vieth, M. Rührig, S. Schmitt, and E. Quandt, J. Appl. Phys. 105, 07C914 (2009).
17.D. X. Wang, C. Nordman, Z. H. Qian, J. M. Daughton, and J. Myers, J. Appl. Phys. 97, 10C906 (2005).
18.Š. Luby, B. Anwarzai, V. Áč, E. Majkova, and R. Senderák, Vac. 86, 718-720 (2012).
19.H. J. Mamin, B. A. G urney, D. R. Wilhoit, and V. S. Speriosu, Appl. Phys. Lett. 72, 3220 (1998).
20.E. Quandt, A. Ludwig, D.G. Lord, and C. A. Faunce, J. Appl. Phys. 83, 7267 (1998).
21.S. S. P. Parkin, Appl. Phys. Lett. 61, 1358 (1992).
22.S. S. P. Parkin, Phys. Rev. Lett. 71, 1641 (1993).
23.S. Guruswamy, N. Srisukhumbowornchai, A. E. Clark, J. B. Restorff, and M. Wun-Fogle, Scr. Mater. 43, 239 (2000).
24.Y. L. Liu, B. M. Wang, Q. F. Zhan, Z. H. Tang, H. L. Yang, G. Liu, Z. H. Zuo, X. S. Zhang, Y. L. Xie, X. J. Zhu, B. Chen, J. L. Wang, and R. W. Li, Sci. Rep. 6, 6615 (2014).
25.G. H. Dai, Q. F. Zhan, Y. W. Liu, H. L. Yang, X. S. Zhang, B. Chen, and R. W. Li, Appl. Phys. Lett. 100, 122407 (2012).
26.X. S. Zhang, Q. F. Zhan, G. H. Dai, Y. W. Liu, Z. H. Zuo, H. L. Yang, B. Chen, and R. W. Li, J. Appl. Phys. 113, 17A901 (2013).
27.F.Y. Yang and C. L. Chien, Phys. Rev. B 85, 2597 (2000).
28.P. M. S. Monteiro and D. S. Schmool, Phys. Rev. B 81, 214439 (2010).

Data & Media loading...


Article metrics loading...



We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd