Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.N. Domingo, E. Bellido, and D. Ruiz-Molina, Chem. Soc. Rev. 41, 258 (2012).
2.S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011).
3.L. Bogani and W. Wernsdorfer, Nature Mater. 7, 179 (2008).
4.T. Nakazono, A. R. Parent, and K. Sakai, Chem. Commun. 49, 6325 (2013).
5.P. S. Miedema, M. M. van Schooneveld, R. Bogerd, T. C. R. Rocha, M. Hävecker, A. Knop-Gericke, and F. M. F. de Groot, J. Phys. Chem. C 115, 25422 (2011).
6.C. Rovira, K. Kunc, J. Hutter, and M. Parrinello, Inorg. Chem. 40, 11 (2001).
7.L. Boucher, in Coordination Chemistry of Macrocyclic Compounds, edited by G. Melson (Springer US, 1979), pp. 461516.
8.T. Kroll, R. Kraus, R. Schönfelder, V. Y. Aristov, O. V. Molodtsova, P. Hoffmann, and M. Knupfer, J. Chem. Phys. 137, 054306 (2012).
9.I. E. Brumboiu, R. Totani, M. de Simone, M. Coreno, C. Grazioli, L. Lozzi, H. C. Herper, B. Sanyal, O. Eriksson, C. Puglia, and B. Brena, J. Phys. Chem. A 118, 927 (2014).
10.A. B. P. Lever, Journal of the Chemical Society 0, 1821 (Resumed) (1965).
11.J. Bartolomé, C. Monton, and I. Schuller, in Molecular Magnets, edited by J. Bartolomé, F. Luis, and J. F. Fernández (Springer Berlin Heidelberg, 2014), pp. 221245.
12.J. M. Assour and W. K. Kahn, J. Am. Chem. Soc. 87, 207 (1965).
13.M.-S. Liao and S. Scheiner, J. Chem. Phys. 114, 9780 (2001).
14.P. A. Reynolds and B. N. Figgis, Inorg. Chem. 30, 2294 (1991).
15.Y. Kitaoka, T. Sakai, K. Nakamura, T. Akiyama, and T. Ito, J. Appl. Phys. 113(17), 17E130 (2013).
16.S. Bhattacharjee, B. Brena, R. Banerjee, H. Wende, O. Eriksson, and B. Sanyal, Chem. Phys. 377(1–3), 9699 (2010).
17.W. Wu, N. M. Harrison, and A. J. Fisher, Phys. Rev. B 88(2), 024426 (2013).
18.K. M. Lange and E. F. Aziz, Chem. Soc. Rev. 42, 6840 (2013).
19.P. S. Johnson, J. M. García-Lastra, C. K. Kennedy, N. J. Jersett, I. Boukahil, F. J. Himpsel, and P. L. Cook, J. Chem. Phys. 140, 114706 (2014).
20.S. Stepanow, P. S. Miedema, A. Mugarza, G. Ceballos, P. Moras, J. C. Cezar, C. Carbone, F. M. F. de Groot, and P. Gambardella, Phys. Rev. B 83, 220401 (2011).
21.T. Kroll, V. Y. Aristov, O. V. Molodtsova, Y. A. Ossipyan, D. V. Vyalikh, B. Büchner, and M. Knupfer, J. Phys. Chem. A 113, 8917 (2009).
22.M. P. Austeria, P. D. Pancharatna, and M. M. Balakrishnarajan, Eur. J. Inorg. Chem. 2014, 3200 (2014).
23.R. Salcedo, L. Pérez-Manríquez, and M. E. Sánchez-Vergara, J. Mol. Struct. 1084, 165 (2015).
24.R. K. Hocking, S. D. George, Z. Gross, F. A. Walker, K. O. Hodgson, B. Hedman, and E. I. Solomon, Inorg. Chem. 48, 1678 (2009).
25.R. K. Hocking, E. C. Wasinger, F. M. F. de Groot, K. O. Hodgson, B. Hedman, and E. I. Solomon, J. Am. Chem. Soc. 128, 10442 (2006).
26.R. K. Hocking, E. C. Wasinger, Y.-L. Yan, F. M. F. deGroot, F. A. Walker, K. O. Hodgson, B. Hedman, and E. I. Solomon, J. Am. Chem. Soc. 129, 113 (2006).
27.E. C. Wasinger, F. M. F. de Groot, B. Hedman, K. O. Hodgson, and E. I. Solomon, J. Am. Chem. Soc. 125, 12894 (2003).
28.J. C. Burant, J. M. Millam, S. S. lyengar et al., J. Chem. Phys. 98, 5648 (1993).
29.J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
30.T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).
31.F. M. F. de Groot, J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).
32.B. T. Thole, G. van der Laan, J. C. Fuggle, G. A. Sawatzky, R. C. Karnatak, and J. M. Esteva, Phys. Rev. B 32, 5107 (1985).
33.R. D. Cowan, The Theory of Atomic Structure and Spectra (Univ of California Press, 1981).
34.P. H. Butler, Point Group Symmetry Applications: Methods and Tables (Springer Science & Business Media, 2012).
35.R. K. Hocking, E. C. Wasinger, Y.-L. Yan, F. M. F. de Groot, F. A. Walker, K. O. Hodgson, B. Hedman, and E. I. Solomon, J. Am. Chem. Soc. 129, 113 (2006).
36.G. v. d. Laan and I. W. Kirkman, J. Phys. Condens. Matter 4, 4189 (1992).
37.F. d. Groot, Coord. Chem. Rev. 249, 3163 (2005).
38.B. Białek, I. Gee Kim, and J. I. Lee, Thin Solid Films 513(1–2), 110113 (2006).
39.N. Marom and L. Kronik, Appl. Phys. A 95(1), 159163 (2008).

Data & Media loading...


Article metrics loading...



To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS) at Co edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co- XAS spectra demonstrate a robust ground state of 2A symmetry that is built from 73% 37 character and 27% ( denotes a ligand hole) components, as the first excited-state with 2E symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A to 2E configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II)-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd