Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4943773
1.
1.N. Domingo, E. Bellido, and D. Ruiz-Molina, Chem. Soc. Rev. 41, 258 (2012).
http://dx.doi.org/10.1039/C1CS15096K
2.
2.S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011).
http://dx.doi.org/10.1039/c1cs15047b
3.
3.L. Bogani and W. Wernsdorfer, Nature Mater. 7, 179 (2008).
http://dx.doi.org/10.1038/nmat2133
4.
4.T. Nakazono, A. R. Parent, and K. Sakai, Chem. Commun. 49, 6325 (2013).
http://dx.doi.org/10.1039/c3cc43031f
5.
5.P. S. Miedema, M. M. van Schooneveld, R. Bogerd, T. C. R. Rocha, M. Hävecker, A. Knop-Gericke, and F. M. F. de Groot, J. Phys. Chem. C 115, 25422 (2011).
http://dx.doi.org/10.1021/jp209295f
6.
6.C. Rovira, K. Kunc, J. Hutter, and M. Parrinello, Inorg. Chem. 40, 11 (2001).
http://dx.doi.org/10.1021/ic000143m
7.
7.L. Boucher, in Coordination Chemistry of Macrocyclic Compounds, edited by G. Melson (Springer US, 1979), pp. 461516.
8.
8.T. Kroll, R. Kraus, R. Schönfelder, V. Y. Aristov, O. V. Molodtsova, P. Hoffmann, and M. Knupfer, J. Chem. Phys. 137, 054306 (2012).
http://dx.doi.org/10.1063/1.4738754
9.
9.I. E. Brumboiu, R. Totani, M. de Simone, M. Coreno, C. Grazioli, L. Lozzi, H. C. Herper, B. Sanyal, O. Eriksson, C. Puglia, and B. Brena, J. Phys. Chem. A 118, 927 (2014).
http://dx.doi.org/10.1021/jp4100747
10.
10.A. B. P. Lever, Journal of the Chemical Society 0, 1821 (Resumed) (1965).
http://dx.doi.org/10.1039/jr9650001821
11.
11.J. Bartolomé, C. Monton, and I. Schuller, in Molecular Magnets, edited by J. Bartolomé, F. Luis, and J. F. Fernández (Springer Berlin Heidelberg, 2014), pp. 221245.
12.
12.J. M. Assour and W. K. Kahn, J. Am. Chem. Soc. 87, 207 (1965).
http://dx.doi.org/10.1021/ja01080a013
13.
13.M.-S. Liao and S. Scheiner, J. Chem. Phys. 114, 9780 (2001).
http://dx.doi.org/10.1063/1.1367374
14.
14.P. A. Reynolds and B. N. Figgis, Inorg. Chem. 30, 2294 (1991).
http://dx.doi.org/10.1021/ic00010a015
15.
15.Y. Kitaoka, T. Sakai, K. Nakamura, T. Akiyama, and T. Ito, J. Appl. Phys. 113(17), 17E130 (2013).
http://dx.doi.org/10.1063/1.4795742
16.
16.S. Bhattacharjee, B. Brena, R. Banerjee, H. Wende, O. Eriksson, and B. Sanyal, Chem. Phys. 377(1–3), 9699 (2010).
http://dx.doi.org/10.1016/j.chemphys.2010.08.020
17.
17.W. Wu, N. M. Harrison, and A. J. Fisher, Phys. Rev. B 88(2), 024426 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.024426
18.
18.K. M. Lange and E. F. Aziz, Chem. Soc. Rev. 42, 6840 (2013).
http://dx.doi.org/10.1039/c3cs00008g
19.
19.P. S. Johnson, J. M. García-Lastra, C. K. Kennedy, N. J. Jersett, I. Boukahil, F. J. Himpsel, and P. L. Cook, J. Chem. Phys. 140, 114706 (2014).
http://dx.doi.org/10.1063/1.4868552
20.
20.S. Stepanow, P. S. Miedema, A. Mugarza, G. Ceballos, P. Moras, J. C. Cezar, C. Carbone, F. M. F. de Groot, and P. Gambardella, Phys. Rev. B 83, 220401 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.220401
21.
21.T. Kroll, V. Y. Aristov, O. V. Molodtsova, Y. A. Ossipyan, D. V. Vyalikh, B. Büchner, and M. Knupfer, J. Phys. Chem. A 113, 8917 (2009).
http://dx.doi.org/10.1021/jp903001v
22.
22.M. P. Austeria, P. D. Pancharatna, and M. M. Balakrishnarajan, Eur. J. Inorg. Chem. 2014, 3200 (2014).
http://dx.doi.org/10.1002/ejic.201402157
23.
23.R. Salcedo, L. Pérez-Manríquez, and M. E. Sánchez-Vergara, J. Mol. Struct. 1084, 165 (2015).
http://dx.doi.org/10.1016/j.molstruc.2014.11.071
24.
24.R. K. Hocking, S. D. George, Z. Gross, F. A. Walker, K. O. Hodgson, B. Hedman, and E. I. Solomon, Inorg. Chem. 48, 1678 (2009).
http://dx.doi.org/10.1021/ic802248t
25.
25.R. K. Hocking, E. C. Wasinger, F. M. F. de Groot, K. O. Hodgson, B. Hedman, and E. I. Solomon, J. Am. Chem. Soc. 128, 10442 (2006).
http://dx.doi.org/10.1021/ja061802i
26.
26.R. K. Hocking, E. C. Wasinger, Y.-L. Yan, F. M. F. deGroot, F. A. Walker, K. O. Hodgson, B. Hedman, and E. I. Solomon, J. Am. Chem. Soc. 129, 113 (2006).
http://dx.doi.org/10.1021/ja065627h
27.
27.E. C. Wasinger, F. M. F. de Groot, B. Hedman, K. O. Hodgson, and E. I. Solomon, J. Am. Chem. Soc. 125, 12894 (2003).
http://dx.doi.org/10.1021/ja034634s
28.
28.J. C. Burant, J. M. Millam, S. S. lyengar et al., J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
29.
29.J. P. Perdew, Phys. Rev. B 33, 8822 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8822
30.
30.T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).
http://dx.doi.org/10.1002/jcc.22885
31.
31.F. M. F. de Groot, J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).
http://dx.doi.org/10.1016/0368-2048(93)02041-J
32.
32.B. T. Thole, G. van der Laan, J. C. Fuggle, G. A. Sawatzky, R. C. Karnatak, and J. M. Esteva, Phys. Rev. B 32, 5107 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.5107
33.
33.R. D. Cowan, The Theory of Atomic Structure and Spectra (Univ of California Press, 1981).
34.
34.P. H. Butler, Point Group Symmetry Applications: Methods and Tables (Springer Science & Business Media, 2012).
35.
35.R. K. Hocking, E. C. Wasinger, Y.-L. Yan, F. M. F. de Groot, F. A. Walker, K. O. Hodgson, B. Hedman, and E. I. Solomon, J. Am. Chem. Soc. 129, 113 (2006).
http://dx.doi.org/10.1021/ja065627h
36.
36.G. v. d. Laan and I. W. Kirkman, J. Phys. Condens. Matter 4, 4189 (1992).
http://dx.doi.org/10.1088/0953-8984/4/16/019
37.
37.F. d. Groot, Coord. Chem. Rev. 249, 3163 (2005).
http://dx.doi.org/10.1016/j.ccr.2004.03.018
38.
38.B. Białek, I. Gee Kim, and J. I. Lee, Thin Solid Films 513(1–2), 110113 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.01.050
39.
39.N. Marom and L. Kronik, Appl. Phys. A 95(1), 159163 (2008).
http://dx.doi.org/10.1007/s00339-008-5007-z
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4943773
Loading
/content/aip/journal/adva/6/3/10.1063/1.4943773
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4943773
2016-03-08
2016-10-01

Abstract

To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS) at Co edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co- XAS spectra demonstrate a robust ground state of 2A symmetry that is built from 73% 37 character and 27% ( denotes a ligand hole) components, as the first excited-state with 2E symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A to 2E configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II)-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4943773.html;jsessionid=r699tkXLaW_bsbaJKuNdJYDB.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4943773&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4943773&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4943773'
Right1,Right2,Right3,