Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4943899
1.
1.R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Applied Physics Letter 78(4), 489491 (2001).
http://dx.doi.org/10.1063/1.1343489
2.
2.R. E. Collin, Field Theory of Guided Waves, 2nd ed. (Wiley-IEEE Press, 1990).
3.
3.Ruey-Bing (Raybeam) Hwang, Periodic Structures: Mode-Matching and Applications in Electromagnetic Engineering (Wiely-IEEE Press, 2013).
4.
4.C. Li and Z. Shen, “Electromagnetic scattering by a conducting cylinder coated with metamaterials,” Progress In Electromagnetics Research 42, 91105 (2003).
http://dx.doi.org/10.2528/PIER03012901
5.
5.S. Arslanagi?, R. W. Ziolkowski, and O. Breinbjerg, “Analytical and numerical investigation of the radiation and scattering from concentric metamaterial cylinders excited by an electric line source,” Radio Sci. 42(6), RS6S15 (2007).
6.
6.S. Arslanagi? and O. Breinbjerg, “A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders,” Optics Express 17(18), 1605916072 (2009).
http://dx.doi.org/10.1364/OE.17.016059
7.
7.J. Sun, J. Zhou, and L. Kang, “Homogenous isotropic invisible cloak based on geometrical optics,” Optics Express 16(22), 1776817773 (2008).
http://dx.doi.org/10.1364/OE.16.017768
8.
8.G.P. Zouros, J.A. Roumeliotis, and G.T. Stathis, “Electromagnetic scattering by an infinite cylinder of material or metamaterial coating eccentrically a dielectric cylinde,” J Opt Soc Am A Opt Image Sci Vis. 28(6), 107685 (2011).
http://dx.doi.org/10.1364/JOSAA.28.001076
9.
9.M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nature Nanotechnology 9, 542547 (2014).
http://dx.doi.org/10.1038/nnano.2014.117
10.
10.C. C. H. Tang, “Backscattering from dielectrically coated infinite cylindrical obstacles,” J. Appl. Phys. 28, 628633 (1957).
http://dx.doi.org/10.1063/1.1722815
11.
11.H. Massoudi, N. J. Damaskos, and P. L. E. Uslenghi, “Scattering by a composite and anisotropic circular cylindrical structures,” Electromagnetics 8, 7183 (1988).
http://dx.doi.org/10.1080/02726348808908206
12.
12.A. Z. Elsherbeni and A. A. Kishk, “Modeling of cylindrical objects by circular dielectric and conducting cylinders,” IEEE Trans. Antennas Propagation 40(1), 9699 (1992).
http://dx.doi.org/10.1109/8.123363
13.
13.A. A. Kishk, R. P. Parrikar, and A. Z. Elsherbeni, “Electromagnetic scattering from an eccentric multilayered circular cylinder,” IEEE Trans. on Antennas and Propagation 40, 295303 (1992).
http://dx.doi.org/10.1109/8.135472
14.
14.R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235147
15.
15.A. Kitagawa and J.-i. Sakai, “Bloch theorem in cylindrical coordinates and its application to a Bragg fiber,” Phys. Rev. A 80, 033802 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.033802
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4943899
Loading
/content/aip/journal/adva/6/3/10.1063/1.4943899
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4943899
2016-03-08
2016-09-26

Abstract

This paper reports the scattering of electromagnetic plane wave by annular metamaterials composed of concentric regular dielectric layers of infinite length. Interestingly, in certain frequency ranges, their scattering properties are similar to those of a perfect electric conductor cylinder, except that the tangential electric field on their surfaces does not vanish. Moreover, the frequency bands of total reflection spectra can be rigorously predicted using Floquet–Bloch theorem.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4943899.html;jsessionid=mZKgwjB1B3I53V5E6ZgdHelC.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4943899&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4943899&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4943899'
Right1,Right2,Right3,