Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944482
1.
1.K. Arutyunov, D. Golubev, and A. Zaikin, Physics Reports 464, 1 (2008).
http://dx.doi.org/10.1016/j.physrep.2008.04.009
2.
3.
3.A. J. Kerman, New Journal of Physics 15, 105017 (2013).
http://dx.doi.org/10.1088/1367-2630/15/10/105017
4.
4.J. E. Mooij and Y. V. Nazarov, Nature Physics 2, 169 (2006).
http://dx.doi.org/10.1038/nphys234
5.
5.J. E. Mooij, G. Schn, A. Shnirman, T. Fuse, C. J. P. M. Harmans, H. Rotzinger, and A. H. Verbruggen, New Journal of Physics 17, 033006 (2015).
http://dx.doi.org/10.1088/1367-2630/17/3/033006
6.
6.J. E. Mooij and C. J. P. M. Harmans, New Journal of Physics 7, 219 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/219
7.
7.O. V. Astafiev, L. B. Ioffe, S. Kafanov, Y. Pashkin, Arutyunov, D. Shahar, O. Cohen, and J. S. Tsai, Nature 484, 355 (2012).
http://dx.doi.org/10.1038/nature10930
8.
8.C. H. Webster, S. Giblin, D. Cox, T. J. B. M. Janssen, and A. Zorin, in Precision Electromagnetic Measurements Digest, 2008. CPEM 2008. Conference on (2008), pp. 628629.
http://dx.doi.org/10.1109/CPEM.2008.4574936
9.
9.A. M. Hriscu and Y. V. Nazarov, Phys. Rev. B 83, 174511 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174511
10.
10.T. T. Hongisto and A. B. Zorin, Phys. Rev. Lett. 108, 097001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.097001
11.
11.N. Giordano, Phys. Rev. Letters 61, 2137 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2137
12.
12.C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and M. Tinkham, Phys. Rev. Lett. 87, 217003 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.217003
13.
13.M. Tinkham, Introduction to Superconductivity (New York: McGraw-Hill, 1996).
14.
14.M. Ma and P. A. Lee, Phys. Rev. B 32, 5658 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.5658
15.
15.M. V. Sadovskii, Physics Reports 282, 225 (1997).
http://dx.doi.org/10.1016/S0370-1573(96)00036-1
16.
16.B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer, M. Ovadia, D. Shahar, M. Feigel’Man, and L. Ioffe, Nature Physics 7, 239 (2011).
http://dx.doi.org/10.1038/nphys1892
17.
17.A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
http://dx.doi.org/10.1103/PhysRevLett.46.211
18.
18.A. Caldeira and A. Leggett, Annals of Physics 149, 374 (1983).
http://dx.doi.org/10.1016/0003-4916(83)90202-6
19.
19.M.-H. Bae, R. C. Dinsmore, M. Sahu, and A. Bezryadin, New Journal of Physics 14, 043014 (2012).
http://dx.doi.org/10.1088/1367-2630/14/4/043014
20.
20.J. S. Lehtinen, K. Zakharov, and K. Y. Arutyunov, Phys. Rev. Lett. 109, 187001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.187001
21.
21.C. H. Webster, J. C. Fenton, T. T. Hongisto, S. P. Giblin, A. B. Zorin, and P. A. Warburton, Phys. Rev. B 87, 144510 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.144510
22.
22.S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).
http://dx.doi.org/10.1103/PhysRevLett.11.80
23.
23.A. H. Anderson and P. W. Dayem, Phys. Rev. Lett. 13 (1964).
24.
24.M.-H. Bae, R. C. Dinsmore, T. Aref, M. Brenner, and A. Bezryadin, Nano Letters 9, 1889 (2009).
http://dx.doi.org/10.1021/nl803894m
25.
25.B. I. Ivlev and V. I. Mel’nikov, Sov. Phys. JETP 63, 1295 (1986).
26.
26.B. I. Ivlev and V. I. Mel’nikov, Phys. Rev. Lett. 55, 1614 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.1614
27.
27.B. I. Ivlev and V. I. Mel’nikov, Sov. Phys. JETP 62, 1298 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.1614
28.
28.M. H. Devoret, J. M. Martinis, D. Esteve, and J. Clarke, Phys. Rev. Lett. 53, 1260 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.1260
29.
29.G.-L. Ingold and Y. V. Nazarov, e-print cond-mat/0508728 (2005).
30.
30.M. H. Ansari, F. K. Wilhelm, U. Sinha, and A. Sinha, Superconductor Science and Technology 26, 125013 (2013).
http://dx.doi.org/10.1088/0953-2048/26/12/125013
31.
31.M. H. Ansari, Superconductor Science and Technology 28, 045005 (2015).
http://dx.doi.org/10.1088/0953-2048/28/4/045005
32.
32.D. E. McCumber, Journal of Applied Physics 39, 3113 (1968).
http://dx.doi.org/10.1063/1.1656743
33.
33.W. C. Stewart, Applied Physics Letters 12, 277 (1968).
http://dx.doi.org/10.1063/1.1651991
34.
34.A. I. Larkin and Y. N. Ovchinnikov, Phys. Rev. B 28, 6281 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.6281
35.
35.B. I. Ivlev and V. I. Mel’nikov, in Quantum Tunneling in Condensed Media, edited by Y. Kagan and A. Leggett (Elsevier Science, 1992).
36.
36.A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, 2011).
37.
37.A. D. Zaikin, D. S. Golubev, A. van Otterlo, and G. T. Zimanyi, Physics-Uspekhi 41, 226 (1998).
http://dx.doi.org/10.1070/PU1998v041n02ABEH000372
38.
38.D. S. Golubev and A. D. Zaikin, Phys. Rev. B 64, 014504 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.014504
39.
39.A. D. Zaikin, D. S. Golubev, A. van Otterlo, and G. T. Zimányi, Phys. Rev. Lett. 78, 1552 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1552
40.
40.A. Jafari-Salim, “Superconducting Nanostructures for Quantum Detection of Electromagnetic Radiation,” Ph. D. thesis, The University of Waterloo, Waterloo, Canada,2014.
41.
41.L. Landau and E. Lifshits, Quantum Mechanics: Non-relativistic Theory (Butterworth-Heinemann, 1977).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944482
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944482
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944482
2016-03-14
2016-12-09

Abstract

We study the rate of quantum phase slips in an ultranarrow superconductingnanowire exposed to weak electromagnetic radiations. The superconductor is in the dirty limit close to the superconducting-insulating transition, where fluxoids move in strong dissipation. We use a semiclassical approach and show that external radiation stimulates a significant enhancement in the probability of quantum phase slips.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944482.html;jsessionid=ZLC4OZExmscAQ9Yu5zKy-l5X.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944482&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944482&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944482'
Right1,Right2,Right3,