Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
2.A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F. A. Ponce, J. Christen, and A. Krost, Phys. Stat. Sol. C 0, 1583 (2003).
3.H. Yu, D. Caliskan, and E. Ozbay, J. Appl. Phys. 100, 033501 (2006).
4.S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 81, 439 (2002).
5.S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, and S. Yoshida, J. Cryst. Growth 298, 831 (2007).
6.S. K. G. Parish, S. P. Denbaars, and U. K. Mishra, J. Electron. Mater. 29, 6 (2000).
7.J. T. Chen, U. Forsberg, and E. Janzén, Appl. Phys. Lett. 102, 193506 (2013).
8.D. D. Koleske, A. E. Wickenden, R. L. Henry, and M. E. Twigg, J. Cryst. Growth 242, 55 (2002).
9.K. Cheng, H. Liang, M. V. Hove, K. Geens, B. D. Jaeger, P. Srivastava, X. Kang, P. Favia, H. Bender, S. Decoutere, J. Dekoster, J. I. d. A. Borniquel, S. W. Jun, and H. Chung, Appl. Phys. Express 5, 011002 (2012).
10.B. Leung, J. Han, and Q. Sun, Phys. Stat. Sol. C 11, 437 (2014).
11.S. Raghavan, X. Weng, E. Dickey, and J. M. Redwing, Appl. Phys. Lett. 88, 041904 (2006).
12.T. F. Kuech, D. J. Wolford, E. Veuhnoff, V. Deline, P. M. Mooney, R. Potemski, and J. Bradley, J. Appl. Phys. 62, 632 (1987).
13.P. Boguslawski, E. L. Briggs, and J. Bernholc, Appl. Phys. Lett. 69, 233 (1996).
14.C. H. Seager, A. F. Wright, J. Yu, and W. Gotz, J. Appl. Phys. 92, 6553 (2002).
15.Z. Zhang, G. Yu, X. Zhang, X. Deng, S. Li, Y. Fan, S. Sun, L. Song, S. Tan, D. Wu, W. Li, W. Huang, K. Fu, Y. Cai, Q. Sun, and B. Zhang, IEEE Trans. Electron Devices 63, 731 (2016).

Data & Media loading...


Article metrics loading...



Electrical breakdown characteristics of AlGaN buffer layers grown on Si(111) are investigated by varying the carbon concentration ([C]: from ∼1016 to 1019 cm−3), Al-composition (x = 0 and 7%), and buffer thickness (from 1.6 to 3.1 μm). A quantitative relationship between the growth conditions and carbon concentration ([C]) is established, which can guide to grow the Ga(Al)N layer with a given [C]. It is found that the carbon incorporation is sensitive to the growth temperature (T) (exponential relationship between [C] and 1/T) and the improvement of breakdown voltage by increasing [C] is observed to be limited when [C] exceeding 1019 cm−3, which is likely due to carbon self-compensation. By increasing the highly resistive (HR) AlGaN buffer thickness from 1.6 to 3.1 μm, the leakage current is greatly reduced down to 1 μA/mm at a bias voltage of 1000 V.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd