Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.E. F. Kelley and R. E. Hebner, Jr., Appl. Phys. Lett. 38, 231 (1981).
2.J. George Hwang, M. Zahn, and L. A. A. Pettersson, IEEE Trans. Dielectr. Electr. Insul. 19, 162 (2012).
3.C. T. Duy, O. Lesaint, A. Denat, and N. Bonifaci, IEEE Trans. Dielectr. Electr.Insul. 16, 1582 (2009).
4.A. Beroual, M. Zahn, A. Badent, K. Kist, A. J. Schwabe, H. Yamashita, K. Yamazawa, M. Danikas, W. D. Chadband, and Y. Torshin, IEEE Electr. Insul. Mag. 14, 6 (1998).
5.F. M. J. McCluskey, A. Denat, and O. Lesaint, IEEE Trans. Dielectr. Electr.Insul. 1, 377 (1994).
6.Mikael Unge, Santanu Singha, Nguyen Van Dung, Dag Linhjell, Stian Ingebrigtsen, and Lars E. Lundgaard, Appl. Phys. Lett. 102, 172905 (2013).
7.N V Dung, H K Hoidalen, D Linhjell et al., IEEE Trans. Dielectr. Electr. Insul. 19(5), 1593 (2012).
8.V. Segal, A. Rabinovich, and A. Rabinovich, in IEEE International Symposium on Electrical Insulation, Virginia, USA, 7-10 June 1998. pp. 619622 (ISEI).
9.J. Li, Z. Zhang, P. Zou, S. Grzybowski, and M. Zahn, IEEE Electr. Insul. Mag. 28, 43 (2012).
10.W. X. Sima, J. Shi, Q. Yang, S. S. Huang, and X. F. Cao, IEEE Trans. Dielectr. Electr.Insul. 22, 380 (2015).
11.J. G. Hwang, M. Zahn, F.M. Osullivan, L.A.A. Pettersson, O. Hjortstam, and R. Liu, J. Appl. Phys. 107, 014310 (2010).
12.Q. Yang, F. Yu, W. X. Sima, and M. Zahn, AIP Advances 5, 097207 (2015).
13.Y. F. Du, Y. Z. Lv, C. R. Li, M. T. Chen, J. Q. Zhou, X. X. Li, Y. Zhou, and Y. X. Zhong, J. Appl. Phys. 110, 104104 (2011).
14.R. Tobazeon, “Prebreakdown phenomena in dielectric liquids,” IEEE Trans. Dielectr. Electr. Insul. 1, 1132 (1994).
15.Q Liu and Z. D. Wang, IEEE Trans. Dielectr. Electr. Insul. 18, 285294 (2011).
16.O. Lesaint and G. Massala, IEEE Trans. Dielectr. Electr. Insul. 5, 360 (1998).
17.J. F. Kolb, R. R. Joshi, S. Xiao, and K. H. Schoenbach, J. Phys. D: Appl. Phys. 41, 234007 (2008).
18.J. C. Devins, S. J. Rzad, and R. J. Schwabe, “Breakdown and prebreakdown phenomena in liquids,” J. Appl. Phys. 52, 4531 (1980).
19.R. Chen and Y. Kirsh, Analysis of Thermally Stimulated Processes (Pergamon, Oxford, 1981).

Data & Media loading...


Article metrics loading...



FeOnanoparticles with an average diameter of 10 nm were prepared and used to modify streamer characteristic of transformer oil. It was found that positive streamer propagation velocity in transformer oil-based FeO nanofluid is greatly reduced by 51% in comparison with that in pure oil. The evolution of streamer shape is also dramatically affected by the presence of nanoparticles, changing from a tree-like shape with sharp branches in pure oil to a bush-like structure with thicker and denser branches in nanofluid. The TSC results reveal that the modification of FeOnanoparticle can greatly increase the density of shallow trap and change space charge distribution in nanofluid by converting fast electrons into slow electrons via trapping and de-trapping process in shallow traps. These negative space charges induced by nanoparticles greatly alleviate the electric field distortion in front of the positive streamer tip and significantly hinder the propagation of positive streamer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd