Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Capasso, Science 235, 172 (1987).
2.H. T. Grahn, Semiconductor Superlattices: Growth and Electronic Properties (World Scientific, Singapore, 1995).
3.J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
4.K. S. Novoselov, A. K. Geim, S. V. Mrozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
5.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
6.Y. Zhang, Y. -W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
7.Y. -W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 210803 (2006).
8.M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
9.X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, 206803 (2008).
10.S. Y. Zhou, G. -H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. -H. Lee, F. Guinea, A. H. Castro-Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).
11.G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007).
12.X. Peng and R. Ahuja, Nano Lett. 8, 4464 (2008).
13.E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
14.J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater. 7, 151 (2008).
15.R. Balog et al., Nat. Mater. 9, 315 (2010).
16.D. Haberer, D. V. Vyalikh, S. Taioli, B. Dora B, M. Farjam, J. Fink, D. Marchenko, T. Pichler, O. K. Ziegler, S. Simonucci, M. S. Dresselhaus, M. Knupfer, B. Bc¨hner, and A. Grüneis, Nano Lett. 10, 3360 (2010).
17.J. Bai, X. Zhong, X. Jiang, Y. Huang, and X. Duan, Nat. Nanotechnol. 5, 190 (2010).
18.X. Liang, Y. -S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Nano Lett. 10, 2454 (2010).
19.G. Gui, J. Li, and J. Zhong, Phys. Rev. B 78, 075435 (2008).
20.F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30 (2010).
21.P. R. Wallace, Phys. Rev. 71, 622 (1947).
22.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
23.C. Bai and X. Zhang, Phys. Rev. B 76, 75430 (2007).
24.M. Barbier, F. M. Peeters, P. Vasilopoulos, and J. M. Pereira, Jr., Phys. Rev. B 77, 115446 (2008).
25.C. -H. Park, L. Yang, Y. -W. Son, M. L. Cohen, and S. G. Louie, Nat. Phys. 4, 213 (2008).
26.C. -H. Park, L. Yang, Y. -W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 101, 126804 (2008).
27.C. -H. Park, Y. -W. Son, L. Yang, M. L. Cohen, and S. G. Louie, Nano Lett. 8, 2920 (2008).
28.M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 80, 205415 (2009).
29.M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 81, 075438 (2010).
30.S. Rusponi, M. Papagno, P. Moras, S. Vlaic, M. Etzkorn, P. M. Sheverdyaeva, D. Pacilé, H. Brune, and C. Carbone, Phys. Rev. Lett. 105, 246803 (2010).
31.P. Burset, A. Levy Yeyati, L. Brey, and H. A. Fertig, Phys. Rev. B 83, 195434 (2011).
32.M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, and B. J. LeRoy, Nat. Phys. 8, 382 (2012).
33.L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Falko, and A. K. Geim, Nature 497, 594 (2013).
34.B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, Science 340, 1427 (2013).
35.L. Dell’Anna and A. De Martino, Phys. Rev. B 79, 045420 (2009).
36.R. Biswas, A. Biswas, N. Hui, and C. Sinha, J. Appl. Phys. 108, 043708 (2010).
37.M. Ramezani Masir, P. Vasilopoulos, and F. M. Peeters, J. Phys.: Condens. Matter 22, 465302 (2010).
38.L. Dell’Anna and A. De Martino, Phys. Rev. B 83, 155449 (2011).
39.X. -X. Guo, D. Liu, and Y. -X. Li, Appl. Phys. Lett. 98, 242101 (2011).
40.G. M. Maksimova, E. S. Azarova, A. Telezhnikov, and V. A. Burdov, Phys. Rev. B 86, 205422 (2012).
41.S. Gattenlöhner, W. Beizig, and M. Titov, Phys. Rev. B 82, 155417 (2010).
42.F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys. Rev. B 85, 195409 (2012).
43.H. Yan, Z. -D. Chu, W. Yan, M. Liu, L. Meng, M. Yang, Y. Fan, J. Wang, R. -F. Dou, Y. Zhang, Z. Liu, J. -C. Nie, and L. He, Phys. Rev. B 87, 075405 (2013).
44.L. A. Chernozatonskii, P. B. Sorokin, and J. W. Brüning, Appl. Phys. Lett. 91, 183103 (2007).
45.M. Yang, A. Nurbawono, C. Zhang, Y. P. Feng, and A. Ariando, Appl. Phys. Lett. 96, 193115 (2010).
46.P. V. Ratnikov, JETP Letters 90, 515 (2009).
47.J. C. W. Song, A. V. Shytov, and L. S. Levitov, Phys. Rev. Lett. 111, 266801 (2013).
48.N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009).
49.A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).
50.G. J. Xu, X. G. Xu, B. H. Wu, J. C. Cao, and C. Zhang, J. Appl. Phys. 107, 123718 (2010).
51.P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, New Jersey, 2005).
52.P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, New Jersey, 2008).
53.I. Rodríguez-Vargas, J. Madrigal-Melchor, and O. Oubram, J. Appl. Phys. 112, 073711 (2012).
54.J. A. Briones-Torres, J. Madrigal-Melchor, J. C. Martínez-Orozco, and I. Rodríguez-Vargas, Superlattices and Microstructures 73, 98 (2014).
55.Y. Xu, Y. He, and Y. Yang, Physica B 457, 188 (2015).
56.X. Wang, X. Jiang, T. Wang, J. Shi, M. Liu, Q. Zeng, Z. Cheng, and X. Qiu, Nano Lett. 15, 3212 (2015).
57.S. Shafraniuk, Graphene: Fundamentals, Devices, and Applications (CRC Press, Boca Raton FL, 2015).
58.A. Rahman, J. W. Guikema, M. Hassan, and N. Markovic, Appl. Phys. Lett. 103, 013112 (2015).
59.R. N. Sajjad and A. W. Ghosh, ACS nano 7, 9808 (2013).
60.R. N. Sajjad, S. Sutar, J. U. Lee, and A. W. Ghosh, Phys. Rev. Lett. 86, 155412 (2012).
61.S. Sutar, E. S. Comfort, J. Liu, T. Taniguchi, K. Watanabe, and J. U. Lee, Nano Lett. 12, 4460 (2012).
62.F. Whiters F, T. H. Bointon, M. Dubois, S. Russo, and M. F. Craciun, Nano Lett. 11, 3912 (2011).
63.K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
64.Y. Qin, J. Han, G. Guo, Y. Du, Z. Li, Y. Song, L. Pi, X. Wang, X. Wan, M. Han, and F. Song, Appl. Phys. Lett. 106, 023108 (2015).

Data & Media loading...


Article metrics loading...



GrapheneSuperlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd