Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944495
1.
1.F. Capasso, Science 235, 172 (1987).
http://dx.doi.org/10.1126/science.235.4785.172
2.
2.H. T. Grahn, Semiconductor Superlattices: Growth and Electronic Properties (World Scientific, Singapore, 1995).
3.
3.J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
http://dx.doi.org/10.1126/science.264.5158.553
4.
4.K. S. Novoselov, A. K. Geim, S. V. Mrozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
5.
5.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
6.
6.Y. Zhang, Y. -W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
7.
7.Y. -W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 210803 (2006).
8.
8.M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
9.
9.X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, 206803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206803
10.
10.S. Y. Zhou, G. -H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. -H. Lee, F. Guinea, A. H. Castro-Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).
http://dx.doi.org/10.1038/nmat2003
11.
11.G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.073103
12.
12.X. Peng and R. Ahuja, Nano Lett. 8, 4464 (2008).
http://dx.doi.org/10.1021/nl802409q
13.
13.E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216802
14.
14.J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater. 7, 151 (2008).
http://dx.doi.org/10.1038/nmat2082
15.
15.R. Balog et al., Nat. Mater. 9, 315 (2010).
http://dx.doi.org/10.1038/nmat2710
16.
16.D. Haberer, D. V. Vyalikh, S. Taioli, B. Dora B, M. Farjam, J. Fink, D. Marchenko, T. Pichler, O. K. Ziegler, S. Simonucci, M. S. Dresselhaus, M. Knupfer, B. Bc¨hner, and A. Grüneis, Nano Lett. 10, 3360 (2010).
http://dx.doi.org/10.1021/nl101066m
17.
17.J. Bai, X. Zhong, X. Jiang, Y. Huang, and X. Duan, Nat. Nanotechnol. 5, 190 (2010).
http://dx.doi.org/10.1038/nnano.2010.8
18.
18.X. Liang, Y. -S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Nano Lett. 10, 2454 (2010).
http://dx.doi.org/10.1021/nl100750v
19.
19.G. Gui, J. Li, and J. Zhong, Phys. Rev. B 78, 075435 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.075435
20.
20.F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat. Phys. 6, 30 (2010).
http://dx.doi.org/10.1038/nphys1420
21.
21.P. R. Wallace, Phys. Rev. 71, 622 (1947).
http://dx.doi.org/10.1103/PhysRev.71.622
22.
22.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
23.
23.C. Bai and X. Zhang, Phys. Rev. B 76, 75430 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075430
24.
24.M. Barbier, F. M. Peeters, P. Vasilopoulos, and J. M. Pereira, Jr., Phys. Rev. B 77, 115446 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115446
25.
25.C. -H. Park, L. Yang, Y. -W. Son, M. L. Cohen, and S. G. Louie, Nat. Phys. 4, 213 (2008).
http://dx.doi.org/10.1038/nphys890
26.
26.C. -H. Park, L. Yang, Y. -W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 101, 126804 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.126804
27.
27.C. -H. Park, Y. -W. Son, L. Yang, M. L. Cohen, and S. G. Louie, Nano Lett. 8, 2920 (2008).
http://dx.doi.org/10.1021/nl801752r
28.
28.M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 80, 205415 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205415
29.
29.M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 81, 075438 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075438
30.
30.S. Rusponi, M. Papagno, P. Moras, S. Vlaic, M. Etzkorn, P. M. Sheverdyaeva, D. Pacilé, H. Brune, and C. Carbone, Phys. Rev. Lett. 105, 246803 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.246803
31.
31.P. Burset, A. Levy Yeyati, L. Brey, and H. A. Fertig, Phys. Rev. B 83, 195434 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195434
32.
32.M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, and B. J. LeRoy, Nat. Phys. 8, 382 (2012).
http://dx.doi.org/10.1038/nphys2272
33.
33.L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Falko, and A. K. Geim, Nature 497, 594 (2013).
http://dx.doi.org/10.1038/nature12187
34.
34.B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, Science 340, 1427 (2013).
http://dx.doi.org/10.1126/science.1237240
35.
35.L. Dell’Anna and A. De Martino, Phys. Rev. B 79, 045420 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.045420
36.
36.R. Biswas, A. Biswas, N. Hui, and C. Sinha, J. Appl. Phys. 108, 043708 (2010).
http://dx.doi.org/10.1063/1.3467778
37.
37.M. Ramezani Masir, P. Vasilopoulos, and F. M. Peeters, J. Phys.: Condens. Matter 22, 465302 (2010).
http://dx.doi.org/10.1088/0953-8984/22/46/465302
38.
38.L. Dell’Anna and A. De Martino, Phys. Rev. B 83, 155449 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155449
39.
39.X. -X. Guo, D. Liu, and Y. -X. Li, Appl. Phys. Lett. 98, 242101 (2011).
http://dx.doi.org/10.1063/1.3599447
40.
40.G. M. Maksimova, E. S. Azarova, A. Telezhnikov, and V. A. Burdov, Phys. Rev. B 86, 205422 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.205422
41.
41.S. Gattenlöhner, W. Beizig, and M. Titov, Phys. Rev. B 82, 155417 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155417
42.
42.F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys. Rev. B 85, 195409 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195409
43.
43.H. Yan, Z. -D. Chu, W. Yan, M. Liu, L. Meng, M. Yang, Y. Fan, J. Wang, R. -F. Dou, Y. Zhang, Z. Liu, J. -C. Nie, and L. He, Phys. Rev. B 87, 075405 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075405
44.
44.L. A. Chernozatonskii, P. B. Sorokin, and J. W. Brüning, Appl. Phys. Lett. 91, 183103 (2007).
http://dx.doi.org/10.1063/1.2800889
45.
45.M. Yang, A. Nurbawono, C. Zhang, Y. P. Feng, and A. Ariando, Appl. Phys. Lett. 96, 193115 (2010).
http://dx.doi.org/10.1063/1.3425664
46.
46.P. V. Ratnikov, JETP Letters 90, 515 (2009).
http://dx.doi.org/10.1134/S0021364009180143
47.
47.J. C. W. Song, A. V. Shytov, and L. S. Levitov, Phys. Rev. Lett. 111, 266801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.266801
48.
48.N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.026807
49.
49.A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).
http://dx.doi.org/10.1038/nphys1198
50.
50.G. J. Xu, X. G. Xu, B. H. Wu, J. C. Cao, and C. Zhang, J. Appl. Phys. 107, 123718 (2010).
http://dx.doi.org/10.1063/1.3445782
51.
51.P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, New Jersey, 2005).
52.
52.P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, New Jersey, 2008).
53.
53.I. Rodríguez-Vargas, J. Madrigal-Melchor, and O. Oubram, J. Appl. Phys. 112, 073711 (2012).
http://dx.doi.org/10.1063/1.4757591
54.
54.J. A. Briones-Torres, J. Madrigal-Melchor, J. C. Martínez-Orozco, and I. Rodríguez-Vargas, Superlattices and Microstructures 73, 98 (2014).
http://dx.doi.org/10.1016/j.spmi.2014.05.028
55.
55.Y. Xu, Y. He, and Y. Yang, Physica B 457, 188 (2015).
http://dx.doi.org/10.1016/j.physb.2014.10.002
56.
56.X. Wang, X. Jiang, T. Wang, J. Shi, M. Liu, Q. Zeng, Z. Cheng, and X. Qiu, Nano Lett. 15, 3212 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b00396
57.
57.S. Shafraniuk, Graphene: Fundamentals, Devices, and Applications (CRC Press, Boca Raton FL, 2015).
58.
58.A. Rahman, J. W. Guikema, M. Hassan, and N. Markovic, Appl. Phys. Lett. 103, 013112 (2015).
http://dx.doi.org/10.1063/1.4905566
59.
59.R. N. Sajjad and A. W. Ghosh, ACS nano 7, 9808 (2013).
http://dx.doi.org/10.1021/nn403336n
60.
60.R. N. Sajjad, S. Sutar, J. U. Lee, and A. W. Ghosh, Phys. Rev. Lett. 86, 155412 (2012).
61.
61.S. Sutar, E. S. Comfort, J. Liu, T. Taniguchi, K. Watanabe, and J. U. Lee, Nano Lett. 12, 4460 (2012).
http://dx.doi.org/10.1021/nl3011897
62.
62.F. Whiters F, T. H. Bointon, M. Dubois, S. Russo, and M. F. Craciun, Nano Lett. 11, 3912 (2011).
http://dx.doi.org/10.1021/nl2020697
63.
63.K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
64.
64.Y. Qin, J. Han, G. Guo, Y. Du, Z. Li, Y. Song, L. Pi, X. Wang, X. Wan, M. Han, and F. Song, Appl. Phys. Lett. 106, 023108 (2015).
http://dx.doi.org/10.1063/1.4905868
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944495
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944495
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944495
2016-03-14
2016-09-29

Abstract

GrapheneSuperlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944495.html;jsessionid=Y14W_cF4vnvTvOFl90rctPwc.x-aip-live-06?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944495&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944495&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944495'
Right1,Right2,Right3,