Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944497
1.
1.M. Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961).
http://dx.doi.org/10.1103/PhysRev.122.1742
2.
2.M. Pollak, Phil.Mag. 23, 519 (1971).
http://dx.doi.org/10.1080/14786437108216402
3.
3.G.E. Pike, Phys.Rev.B 6, 1572 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.1572
4.
4.M. Pollak and G.E. Pike, Phy.Rev.Lett. 28, 1449 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.1449
5.
5.D. Emin, C.H. Seager, and R.K. Quinn, Phy.Rev.Lett. 28, 813 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.813
6.
6.C.H. Seager and R.K. Quinn, J.Non-Cryst.Solids 17, 386 (1975).
http://dx.doi.org/10.1016/0022-3093(75)90128-3
7.
7.S.R. Elliot, Phil.Mag. 36, 1291 (1977).
http://dx.doi.org/10.1080/14786437708238517
8.
8.N.F. Mott, Adv.Phys. 16, 49 (1967).
http://dx.doi.org/10.1080/00018736700101265
9.
9.P.W. Anderson, Phys.Rev.Lett. 34, 953 (1975).
http://dx.doi.org/10.1103/PhysRevLett.34.953
10.
10.W.A. Philips, Phil.Mag. 34, 983 (1976).
http://dx.doi.org/10.1080/00318087608227723
11.
11.R.A. Street, Phys.Rev.B 17, 3984 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.3984
12.
12.S.R Elliot, Phil.Mag.B 40, 507 (1979).
http://dx.doi.org/10.1080/01418637908226775
13.
13.K. Hirata, M. Kitao, and S. Yamada, J.Phys.Soc.Jpn. 52, 1317 (1983).
http://dx.doi.org/10.1143/JPSJ.52.1317
14.
14.K Shimakwa, Phil.Mag.B 46, 123 (1982).
http://dx.doi.org/10.1080/13642818208246429
15.
15.Y. Takano, M. Kitao, and S Yamada, Philos.Mag,B 55, 515 (1987).
http://dx.doi.org/10.1080/13642818708217961
16.
16.J.J. Hauser, Phy.Rev.Lett. 44, 1534 (1980).
http://dx.doi.org/10.1103/PhysRevLett.44.1534
17.
17.Fathy Salman, Turk J.Phys. 28, 41 (2004).
18.
18.S.D. Savransky, J.Ovonic Res. 1, 25 (2005).
19.
19.R. Shukla, P. Khurana, and K.K. Srivastava, Phil.Mag.B 64, 389 (1991).
http://dx.doi.org/10.1080/13642819108215264
20.
20.N. Goyal, R. Shukla, and Manohar Lal, Parmana 40, 377 (1993).
http://dx.doi.org/10.1007/BF02847498
21.
21.F.I. Mustafa, Shikha Gupta, N. Goyal, and S.K. Tripathi, Physica B 405, 4087 (2010).
http://dx.doi.org/10.1016/j.physb.2010.06.006
22.
22.A. Thakur, V. Sharma, G.S.S. Saini, N. Goyal, and S.K. Tripathi, J.Phys.D.Appl. Physics 38, 1 (2005).
http://dx.doi.org/10.1088/0022-3727/38/12/016
23.
23.K. Shimakwa and F. Abdel-Wahab, Appl.Phys.Lett. 70, 652 (1997).
http://dx.doi.org/10.1063/1.118323
24.
24.W. Meyer and H. Neldel, Z.Tech.Phys.(Leipzig) 12, 588 (1937).
25.
25.F. Abdel-Wahab, J.Appl.Phys. 91, 265 (2002);
http://dx.doi.org/10.1063/1.1416135
25.F. Abdel-Wahab, Phil.Mag.B 82, 1327 (2002).
http://dx.doi.org/10.1080/13642810208218366
26.
26.N. Mehta, A.S. Mann, and A. Kumar, Chalcogenide Letters. 4, 139 (2007).
27.
27.R.S. Sharma, N. Mehta, and A. Kumar, Chem.Phys.Letters 25, 4079 (2008).
28.
28.J C Dyre, J.Appl.Phys. 64, 2456 (1988).
http://dx.doi.org/10.1063/1.341681
29.
29.S. Prakash, Kulbir Kaur, Navdeep Goyal, and S.K. Tripathi, Pramana J.Phys. 76, 629 (2011).
http://dx.doi.org/10.1007/s12043-011-0013-7
30.
30.D. Emin and T. Holstein, Ann. Phys. 53, 439 (1969);
http://dx.doi.org/10.1016/0003-4916(69)90034-7
30.D. Emin, Phys.Rev.Letteres 100, 166602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.166602
31.
31.A.R Long, Adv. Phys. 31, 553 (1982).
http://dx.doi.org/10.1080/00018738200101418
32.
32.N.F. Mott and E.A. Davis, in Electronic Processes in Non-crystaline Materials, 2nd ed. (Claredon, Oxford, 1979), Chap. 9.
33.
33.A.I. Lakatos and M. Abkowitz, Phys.Rev.B 3, 1791 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.1791
34.
34.N. Goyal and A. Vohra, Phys.Status Solidi (b) 171, 477 (1992).
http://dx.doi.org/10.1002/pssb.2221710218
35.
35.A.E. Owen and J.M. Robertson, J.Non Crystalline Solids 2, 40 (1970).
http://dx.doi.org/10.1016/0022-3093(70)90119-5
36.
36.M. Kitao, Jap.J.Appl.Phys. 11, 1472 (1972).
http://dx.doi.org/10.1143/JJAP.11.1472
37.
37.H.K. Rockstad, J.Non-Crystalline Solids 8-10, 621 (1972).
http://dx.doi.org/10.1016/0022-3093(72)90201-3
38.
38.M. Kastner, D. Adler, and H. Fritzsche, Phys. Rev.Lett. 37, 1504 (1976).
http://dx.doi.org/10.1103/PhysRevLett.37.1504
39.
39.A. Millar and E. Abrahams, Phys.Rev. 120, 745 (1960).
http://dx.doi.org/10.1103/PhysRev.120.745
40.
40.D. Emin, Phys.Rev.B 46, 9419 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.9419
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944497
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944497
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944497
2016-03-14
2016-09-27

Abstract

The random free energy barrier hopping model is proposed to explain the ac conductivity () of chalcogenide glasses. The Coulomb correlation is consistently accounted for in the polarizability and defect distribution functions and the relaxation time is augmented to include the overlapping of hopping particle wave functions. It is observed that ac and dc conduction in chalcogenides are due to same mechanism and Meyer-Neldel (MN) rule is the consequence of temperature dependence of hopping barriers. The exponential parameter s is calculated and it is found that s is subjected to sample preparation and measurement conditions and its value can be less than or greater than one. The calculated results for , , and are found in close agreement with the experimental data. The bipolaron and single polaron hopping contributions dominates at lower and higher temperatures respectively and in addition to high energy optical phonons, low energy optical and high energy acoustic phonons also contribute to the hopping process. The variations of hopping distance with temperature is also studied. The estimated defect number density and static barrier heights are compared with other existing calculations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944497.html;jsessionid=Wcj1xiw1OJmusbwTsxUDvZfz.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944497&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944497&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944497'
Right1,Right2,Right3,