Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature 396, 323 (1998).
2.I. V. Anoshkin, A. V. Talyzin, A. G. Nasibulin, A. V. Krasheninnikov, H. Jiang, R. M. Nieminen, and E. I. Kauppinen, ChemPhysChem 15, 1660 (2014).
3.K. Yanagi, Y. Miyata, and H. Kataura, Adv. Mater. 18, 437 (2006).
4.Y. Iwai, M. Hirose, R. Kano, S. Kawasaki, Y. Hattori, and K. Takahashi, J. Phys. Chem. Solids 69, 1199 (2008).
5.Y. Maniwa, H. Kataura, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, and Y. Okabe, Chem. Phys. Lett. 401, 534 (2005).
6.H. Song, Y. Ishii, A. Al-zubaidi, T. Sakai, and S. Kawasaki, Phys. Chem. Chem. Phys. 15, 5767 (2013).
7.K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Nature 412, 802 (2001).
8.O. Byl, J.-C. Liu, Y. Wang, W.-L. Yim, J. K. Johnson, and J. T. Yates, J. Am. Chem. Soc. 128, 12090 (2006).
9.K. Urita, Y. Shiga, T. Fujimori, T. Iiyama, Y. Hattori, H. Kanoh, T. Ohba, H. Tanaka, M. Yudasaka, S. Iijima, I. Moriguchi, F. Okino, M. Endo, and K. Kaneko, J. Am. Chem. Soc. 133, 10344 (2011).
10.T. Fujimori, A. Morelos-Gómez, Z. Zhu, H. Muramatsu, R. Futamura, K. Urita, M. Terrones, T. Hayashi, M. Endo, S. Young Hong, Y. Chul Choi, D. Tománek, and K. Kaneko, Nat. Commun. 4 (2013).
11.G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, J. Phys. Chem. Lett. 1, 2193 (2010).
12.Y.-C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, and Y. Shao-Horn, J. Am. Chem. Soc. 132, 12170 (2010).
13.W. Liu, Q. Sun, Y. Yang, J.-Y. Xie, and Z.-W. Fu, Chem. Commun. 49, 1951 (2013).
14.Z. Jiang, Y. Kato, A. Al-Zubaidi, K. Yamamoto, and S. Kawasaki, Mater. Express 4, 337 (2014).
15.J. Shim, K. A. Striebel, and E. J. Cairns, J. Electrochem. Soc. 149, A1321 (2002).
16.S.-R. Chen, Y.-P. Zhai, G.-L. Xu, Y.-X. Jiang, D.-Y. Zhao, J.-T. Li, L. Huang, and S.-G. Sun, Electrochim. Acta 56, 9549 (2011).
17.J. Guo, Y. Xu, and C. Wang, Nano Lett. 11, 4288 (2011).
18.S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, and L.-J. Wan, J. Am. Chem. Soc. 134, 18510 (2012).
19.J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Angew. Chem. Int. Ed. 51, 3591 (2012).
20.J.-j. Chen, Q. Zhang, Y.-n. Shi, L.-l. Qin, Y. Cao, M.-s. Zheng, and Q.-f. Dong, Phys. Chem. Chem. Phys. 14, 5376 (2012).
21.V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, and T. Rojo, Energy Environ. Sci. 5, 5884 (2012).
22.S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, and K. Fujiwara, Adv. Funct. Mater. 21, 3859 (2011).
23.M. Dahbi, N. Yabuuchi, K. Kubota, K. Tokiwa, and S. Komaba, Phys. Chem. Chem. Phys. 16, 15007 (2014).
24.M. Hibino, R. Harimoto, Y. Ogasawara, R. Kido, A. Sugahara, T. Kudo, E. Tochigi, N. Shibata, Y. Ikuhara, and N. Mizuno, J. Am. Chem. Soc. 136, 488 (2014).
25.T. Matsushita, Y. Ishii, and S. Kawasaki, Mater. Express 3, 30 (2013).
26.T. Ichitsubo, T. Adachi, S. Yagi, and T. Doi, J. Mater. Chem. 21, 11764 (2011).
27.Y. Orikasa, T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z.-D. Huang, T. Minato, C. Tassel, J. Kim, Y. Kobayashi, T. Abe, H. Kageyama, and Y. Uchimoto, Sci. Rep. 4, 5622 (2014).
28.T. Ishihara, M. Koga, H. Matsumoto, and M. Yoshio, Electrochem. Solid-State Lett. 10, A74 (2007).
29.T. Ishihara, Y. Yokoyama, F. Kozono, and H. Hayashi, J. Power Sources 196, 6956 (2011).
30.X. Ji, K. T. Lee, and L. F. Nazar, Nat. Mater. 8, 500 (2009).
31.J. Qian, X. Wu, Y. Cao, X. Ai, and H. Yang, Angew. Chem. Int. Ed. 52, 4633 (2013).
32.Y. Kim, Y. Park, A. Choi, N.-S. Choi, J. Kim, J. Lee, J. H. Ryu, S. M. Oh, and K. T. Lee, Adv. Mater. 25, 3045 (2013).
33.Y. Zhu, Y. Wen, X. Fan, T. Gao, F. Han, C. Luo, S.-C. Liou, and C. Wang, ACS Nano 9, 3254 (2015).
34.Y. Ishii, Y. Nishiwaki, A. Al-zubaidi, and S. Kawasaki, J. Phys. Chem. C 117, 18120 (2013).
35.S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).
36.E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).
37.See supplementary material at for Figures S1–S4.[Supplementary Material]
38.J. Song, Z. Yu, M. L. Gordin, S. Hu, R. Yi, D. Tang, T. Walter, M. Regula, D. Choi, X. Li, A. Manivannan, and D. Wang, Nano Lett. 14, 6329 (2014).

Data & Media loading...


Article metrics loading...



We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC) and two kinds of single-walled carbon nanotubes(SWCNTs) having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs). It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd