Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944580
1.
1.B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature 396, 323 (1998).
http://dx.doi.org/10.1038/24521
2.
2.I. V. Anoshkin, A. V. Talyzin, A. G. Nasibulin, A. V. Krasheninnikov, H. Jiang, R. M. Nieminen, and E. I. Kauppinen, ChemPhysChem 15, 1660 (2014).
http://dx.doi.org/10.1002/cphc.201301200
3.
3.K. Yanagi, Y. Miyata, and H. Kataura, Adv. Mater. 18, 437 (2006).
http://dx.doi.org/10.1002/adma.200501839
4.
4.Y. Iwai, M. Hirose, R. Kano, S. Kawasaki, Y. Hattori, and K. Takahashi, J. Phys. Chem. Solids 69, 1199 (2008).
http://dx.doi.org/10.1016/j.jpcs.2007.10.035
5.
5.Y. Maniwa, H. Kataura, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, and Y. Okabe, Chem. Phys. Lett. 401, 534 (2005).
http://dx.doi.org/10.1016/j.cplett.2004.11.112
6.
6.H. Song, Y. Ishii, A. Al-zubaidi, T. Sakai, and S. Kawasaki, Phys. Chem. Chem. Phys. 15, 5767 (2013).
http://dx.doi.org/10.1039/c3cp50506e
7.
7.K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Nature 412, 802 (2001).
http://dx.doi.org/10.1038/35090532
8.
8.O. Byl, J.-C. Liu, Y. Wang, W.-L. Yim, J. K. Johnson, and J. T. Yates, J. Am. Chem. Soc. 128, 12090 (2006).
http://dx.doi.org/10.1021/ja057856u
9.
9.K. Urita, Y. Shiga, T. Fujimori, T. Iiyama, Y. Hattori, H. Kanoh, T. Ohba, H. Tanaka, M. Yudasaka, S. Iijima, I. Moriguchi, F. Okino, M. Endo, and K. Kaneko, J. Am. Chem. Soc. 133, 10344 (2011).
http://dx.doi.org/10.1021/ja202565r
10.
10.T. Fujimori, A. Morelos-Gómez, Z. Zhu, H. Muramatsu, R. Futamura, K. Urita, M. Terrones, T. Hayashi, M. Endo, S. Young Hong, Y. Chul Choi, D. Tománek, and K. Kaneko, Nat. Commun. 4 (2013).
http://dx.doi.org/10.1038/ncomms3162
11.
11.G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, J. Phys. Chem. Lett. 1, 2193 (2010).
http://dx.doi.org/10.1021/jz1005384
12.
12.Y.-C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, and Y. Shao-Horn, J. Am. Chem. Soc. 132, 12170 (2010).
http://dx.doi.org/10.1021/ja1036572
13.
13.W. Liu, Q. Sun, Y. Yang, J.-Y. Xie, and Z.-W. Fu, Chem. Commun. 49, 1951 (2013).
http://dx.doi.org/10.1039/c3cc00085k
14.
14.Z. Jiang, Y. Kato, A. Al-Zubaidi, K. Yamamoto, and S. Kawasaki, Mater. Express 4, 337 (2014).
http://dx.doi.org/10.1166/mex.2014.1179
15.
15.J. Shim, K. A. Striebel, and E. J. Cairns, J. Electrochem. Soc. 149, A1321 (2002).
http://dx.doi.org/10.1149/1.1503076
16.
16.S.-R. Chen, Y.-P. Zhai, G.-L. Xu, Y.-X. Jiang, D.-Y. Zhao, J.-T. Li, L. Huang, and S.-G. Sun, Electrochim. Acta 56, 9549 (2011).
http://dx.doi.org/10.1016/j.electacta.2011.03.005
17.
17.J. Guo, Y. Xu, and C. Wang, Nano Lett. 11, 4288 (2011).
http://dx.doi.org/10.1021/nl202297p
18.
18.S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, and L.-J. Wan, J. Am. Chem. Soc. 134, 18510 (2012).
http://dx.doi.org/10.1021/ja308170k
19.
19.J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Angew. Chem. Int. Ed. 51, 3591 (2012).
http://dx.doi.org/10.1002/anie.201107817
20.
20.J.-j. Chen, Q. Zhang, Y.-n. Shi, L.-l. Qin, Y. Cao, M.-s. Zheng, and Q.-f. Dong, Phys. Chem. Chem. Phys. 14, 5376 (2012).
http://dx.doi.org/10.1039/c2cp40141j
21.
21.V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, and T. Rojo, Energy Environ. Sci. 5, 5884 (2012).
http://dx.doi.org/10.1039/c2ee02781j
22.
22.S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, and K. Fujiwara, Adv. Funct. Mater. 21, 3859 (2011).
http://dx.doi.org/10.1002/adfm.201100854
23.
23.M. Dahbi, N. Yabuuchi, K. Kubota, K. Tokiwa, and S. Komaba, Phys. Chem. Chem. Phys. 16, 15007 (2014).
http://dx.doi.org/10.1039/c4cp00826j
24.
24.M. Hibino, R. Harimoto, Y. Ogasawara, R. Kido, A. Sugahara, T. Kudo, E. Tochigi, N. Shibata, Y. Ikuhara, and N. Mizuno, J. Am. Chem. Soc. 136, 488 (2014).
http://dx.doi.org/10.1021/ja411365z
25.
25.T. Matsushita, Y. Ishii, and S. Kawasaki, Mater. Express 3, 30 (2013).
http://dx.doi.org/10.1166/mex.2013.1095
26.
26.T. Ichitsubo, T. Adachi, S. Yagi, and T. Doi, J. Mater. Chem. 21, 11764 (2011).
http://dx.doi.org/10.1039/c1jm11793a
27.
27.Y. Orikasa, T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z.-D. Huang, T. Minato, C. Tassel, J. Kim, Y. Kobayashi, T. Abe, H. Kageyama, and Y. Uchimoto, Sci. Rep. 4, 5622 (2014).
http://dx.doi.org/10.1038/srep05622
28.
28.T. Ishihara, M. Koga, H. Matsumoto, and M. Yoshio, Electrochem. Solid-State Lett. 10, A74 (2007).
http://dx.doi.org/10.1149/1.2424263
29.
29.T. Ishihara, Y. Yokoyama, F. Kozono, and H. Hayashi, J. Power Sources 196, 6956 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2010.11.075
30.
30.X. Ji, K. T. Lee, and L. F. Nazar, Nat. Mater. 8, 500 (2009).
http://dx.doi.org/10.1038/nmat2460
31.
31.J. Qian, X. Wu, Y. Cao, X. Ai, and H. Yang, Angew. Chem. Int. Ed. 52, 4633 (2013).
http://dx.doi.org/10.1002/anie.201209689
32.
32.Y. Kim, Y. Park, A. Choi, N.-S. Choi, J. Kim, J. Lee, J. H. Ryu, S. M. Oh, and K. T. Lee, Adv. Mater. 25, 3045 (2013).
http://dx.doi.org/10.1002/adma.201204877
33.
33.Y. Zhu, Y. Wen, X. Fan, T. Gao, F. Han, C. Luo, S.-C. Liou, and C. Wang, ACS Nano 9, 3254 (2015).
http://dx.doi.org/10.1021/acsnano.5b00376
34.
34.Y. Ishii, Y. Nishiwaki, A. Al-zubaidi, and S. Kawasaki, J. Phys. Chem. C 117, 18120 (2013).
http://dx.doi.org/10.1021/jp4057362
35.
35.S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).
http://dx.doi.org/10.1021/ja01269a023
36.
36.E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc. 73, 373 (1951).
http://dx.doi.org/10.1021/ja01145a126
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4944580 for Figures S1–S4.[Supplementary Material]
38.
38.J. Song, Z. Yu, M. L. Gordin, S. Hu, R. Yi, D. Tang, T. Walter, M. Regula, D. Choi, X. Li, A. Manivannan, and D. Wang, Nano Lett. 14, 6329 (2014).
http://dx.doi.org/10.1021/nl502759z
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944580
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944580
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944580
2016-03-15
2016-09-28

Abstract

We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC) and two kinds of single-walled carbon nanotubes(SWCNTs) having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs). It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944580.html;jsessionid=4ECfSgDVZ0VEkeOkbSCrEop5.x-aip-live-06?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944580&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944580&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944580'
Right1,Right2,Right3,