Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. Zhang, and J. Jia, Nat. Mater. 14, 1020 (2015).
2.C. C. Liu, H. Jiang, and Y. Yao, Phys.Rev. B 84, 195430 (2011).
3.Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Phys. Rev. Lett. 111, 136804 (2013).
4.G. F. Zhang, Y. Li, and C. J. Wu, Phys. Rev. B 90, 075114 (2014).
5.S. C. Wu, G. Shan, and B. H. Yan, Phys. Rev. Lett. 113, 256401 (2014).
6.Y. Xu, Z. Gan, and S. C. Zhang, Phys. Rev. Lett. 112, 226801 (2014).
7.J. Wang, Y. Xu, and S. C. Zhang, Phys.Rev. B 90, 054503 (2014).
8.J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, Nat. Nanotechnol. 5, 326 (2010).
9.L. Kou, C. Tang, W. Guo, and C. Chen, ACS Nano 5, 1012 (2011).
10.Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, Adv. Mater. 24, 2320.
11.Y. Shi, W. Zhou, A. Y. Lu, W. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, J. C. Idrobo, and J. Kong, Nano Lett. 12, 2784 (2012).
12.Z. Zhang, X. Zou, V. H. Crespi, and B. I. Yakobson, ACS Nano 7, 10475 (2013).
13.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
14.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
15.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
16.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
17.O.V. Yazyev and S. G. Louie, Phys. Rev. B 81, 195420 (2010).
18.W. H. Brito, R. Kagimura, and R. H. Miwa, Phys.Rev. B 85, 035404 (2012).
19.W. H. Brito, R. Kagimura, and R. H. Miwa, Appl.Phys. Lett. 98, 213107 (2011).

Data & Media loading...


Article metrics loading...



The geometric and electronic properties of grain boundary(GB) in two-dimensional (2D) stanene have been investigated by first-principles calculations. Four typical GB structures with particularly low formation energies were found. These extended defects act as quasi-one-dimensional semiconductor or metallic wires depending on their geometric structures. Moreover, they are reactive and the adsorption of H atoms at the GB region is more stable than the stanene bulk region. A single H adsorption poses a drastic effect on the electronic behavior of GB defects, and the band structures can be tuned by the coverages of H adsorption at these GB defects in stanene. The present results indicate that GBs are important defects in stanene which may be useful for nanomaterial devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd