Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944745
1.
1.For an extensive review of the electronic, optical, and transport phenomena in the systems of reduced dimensions such as quantum wells, quantum wires, quantum dots, and modulated quantum structures, seeM.S. Kushwaha, Surf. Sci. Rep. 41, 1 (2001).
http://dx.doi.org/10.1016/S0167-5729(00)00007-8
2.
2.A.I. Ekimov and A.A. Onushchenko, Sov. Phys.: Semiconductors 16, 775 (1981).
3.
3.Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
http://dx.doi.org/10.1063/1.92959
4.
4.L.E. Brus, The Jerusalem Sumposia on Quantum Chemistry 17, 431 (1984).
http://dx.doi.org/10.1007/978-94-009-5237-9_33
5.
5.M.A. Reed, J.N. Randall, R.J. Aggrawal, R.J. Matyi, T.M. Moore, and A.E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.535
6.
6.U. Meirav, M.A. Kastner, and S.J. Wind, Phys. Rev. Lett. 65, 771 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.771
7.
7.B. Su, V.I. Goldman, and J.E. Cunningham, Science 255, 313 (1992).
http://dx.doi.org/10.1126/science.255.5042.313
8.
8.P. Guéret, N. Blanc, R. Germann, and H. Rothuien, Phys. Rev. Lett. 68, 1896 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1896
9.
9.N.C. van der Vaart, M.P. de Ruyter van Steveninck, L.P. Kouwenhoven, A.T. Johnson, Y. V. Naarov, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 73, 320 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.320
10.
10.T. Schmidt, M. Tewordt, R.H. Blick, R.J. Haug, D. Pfannkuche, K.v. Kliting, A. Förster, and H. Lüth, Phys. Rev. B 51, 5570(R) (1995).
http://dx.doi.org/10.1103/PhysRevB.51.5570
11.
11.T.P. Smith, K.Y. Lee, C.M. Knoedler, J.M. Hong, and D.P. Kern, Phys. Rev. B 38, 2172 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.2172
12.
12.W. Hansen, T.P. Smith, K.Y. Lee, J.A. Brum, C.M. Knoedler, J.M. Hong, and D.P. Kern, Phys. Rev. Lett. 62, 2168 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.2168
13.
13.R.H. Silsbee and R.C. Ashoori, Phys. Rev. Lett. 64, 1991 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1991
14.
14.R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, and K. W. West, Phys. Rev. Lett. 68, 3088 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3088
15.
15.R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, Phys. Rev. Lett. 71, 613 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.613
16.
16.Ch. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.2164
17.
17.A. Lorke, J.P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 64, 2559 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.2559
18.
18.T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Superlatt. & Microstruct. 9, 285 (1991).
http://dx.doi.org/10.1016/0749-6036(91)90244-L
19.
19.B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett. 68, 1371 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1371
20.
20.H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, and P.M. Petroff, Phys. Rev. Lett. 73, 2252 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2252
21.
21.K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, and G. Weimann, Phys. Rev. Lett. 69, 3216 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3216
22.
22.S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3613
23.
23.R. Stren, U. Bockelmann, F. Hirler, G. Abstreiter, G. Böhm, and G. Weimann, Phys. Rev. Lett. 73, 3022 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3022
24.
24.D.J. Lockwood, P. Hawrylak, P.D. Wang, C.M. Sotomayor Torres, A. Pincuk, and B.S. Dennis, Phys. Rev. Lett. 77, 354 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.354
25.
25.C. Schüller, K. Keller, G. Biese, E. Ulrichs, L. Rolf, C. Steinebach, D. Heitmann, and K. Eberl, Phys. Rev. Lett. 80, 2673 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2673
26.
26.C. Steinebach, C. Schüller, and D. Heitmann, Phys. Rev. B 59, 10240 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.10240
27.
27.P.N.H. Nakashima, T Tsuuki, and A.W.S. Johnson, J. Appl. Phys. 85, 1556 (1999).
http://dx.doi.org/10.1063/1.369337
28.
28.P.L. McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, N.S. Wingreen, and S.J. Wind, Phys. Rev. Lett. 66, 1926 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1926
29.
29.F.M. Peeters, Phys. Rev. B 42, 1486 (1990); See also Ref.1.
http://dx.doi.org/10.1103/PhysRevB.42.1486
30.
30.V. Fock, Z. Phys. 47, 446 (1928).
http://dx.doi.org/10.1007/BF01390750
31.
31.C.G. Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1930).
http://dx.doi.org/10.1017/S0305004100009373
32.
32.D. Pines, The Many-Body Problem (Benjamin, New York, 1961).
33.
33.A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).
34.
34.G.D. Mahan, Many Particle Physics (Plenum, New York, 1981).
35.
35.M.S. Kushwaha, Mod. Phys. Lett. B 28, 1430013 (2014);
http://dx.doi.org/10.1142/S0217984914300130
35.This short review article argues how and why a magnetized quantum wire can behave as an optical amplifier.
36.
36.M.S. Kushwaha, AIP Advances 3 3, 042103 (2013).
http://dx.doi.org/10.1063/1.4800685
37.
37.M.S. Kushwaha, Appl. Phys. Lett. 103, 173116 (2013).
http://dx.doi.org/10.1063/1.4827675
38.
38.M.S. Kushwaha, AIP Advances 2, 032104 (2012).
http://dx.doi.org/10.1063/1.4738370
39.
39.M.S. Kushwaha, J. Appl. Phys. 109, 106102(C) (2011).
http://dx.doi.org/10.1063/1.3592637
40.
40.M.S. Kushwaha, J. Appl. Phys. 106, 066102(C) (2009).
http://dx.doi.org/10.1063/1.3232008
41.
41.M.S. Kushwaha, Phys. Rev. B 78, 153306 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.153306
42.
42.D.W. Wang, A. J. Millis, and S. Das Sarma, Phys. Rev. B 70, 165101 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.165101
43.
43.M.S. Kushwaha and P. Zielinski, Sold State Commun. 112, 605 (1999).
http://dx.doi.org/10.1016/S0038-1098(99)00413-5
44.
44.A.N. Borges, S.A. Leao, and O. Hipolito, Phys. Rev. B 55, 4680 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.4680
45.
45.S. Das Sarma, E.H. Hwang, and L. Zheng, Phys. Rev. B 54, 8057 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.8057
46.
46.F.A. Reboredo and C.R. Proetto, Phys. Rev. B 50, 15174 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.15174
47.
47.P.W. Park, A.H. MacDonald, and W.L. Schaich, Phys. Rev. B 46, 12635 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.12635
48.
48.Q.P. Li and S. Das Sarma, Phys. Rev. B 43, 11768 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.11768
49.
49.A. Gold and A. Ghaali, Phys. Rev. B 41, 7626 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7626
50.
50.W. Que and G. Kirczenow, Phys. Rev. B 37, 7153 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.7153
51.
51.S. Das Sarma, Phys. Rev. B B 29, 2334 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.2334
52.
52.M.S. Kushwaha and H. Sakaki, Phys. Rev. B 69, 155331 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155331
53.
53.M.S. Kushwaha and H. Sakaki, Solid State Commun. 130, 717 (2004).
http://dx.doi.org/10.1016/j.ssc.2004.04.002
54.
54.M.S. Kushwaha, Phys. Rev. B 77, 241305(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.77.241305
55.
55.M.S. Kushwaha and S.E. Ulloa, Phys. Rev. B 73, 205306 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205306
56.
56.M.S. Kushwaha and S.E. Ulloa, Phys. Rev. B 73, 045335 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045335
57.
57.M.S. Kushwaha, Phys. Rev. B 74, 045304 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045304
58.
58.M.S. Kushwaha, Phys. Rev. B 76, 245315 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.245315
59.
59.M.S. Kushwaha, J. Appl. Phys. 104, 083714 (2008).
http://dx.doi.org/10.1063/1.3003086
60.
60.M.S. Kushwaha, J. Chem. Phys. 135, 124704 (2011).
http://dx.doi.org/10.1063/1.3640889
61.
61.M.S. Kushwaha, Electronics Letters 50, 1305 (2014).
http://dx.doi.org/10.1049/el.2014.2060
62.
62.M.S. Kushwaha, AIP Advances 4, 127151 (2014).
http://dx.doi.org/10.1063/1.4905380
63.
63.N.D. Mermin, Phys. Rev. B 1, 2362 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.2362
64.
64.M. Stone, H.W. Wyld, and R.L. Schult, Phys. Rev. B 45, 14156 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.14156
65.
65.M.S. Kushwaha and F. Garcia-Moliner, Phys. Lett. A 205, 217 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00566-L
66.
66.S. Das Sarma and D.W. Wang, Phys. Rev. Lett. 83, 816 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.816
67.
67.R.B. Dingle, Proc. Roy. Soc. (London) A 211, 500 (1952);
http://dx.doi.org/10.1098/rspa.1952.0055
67.R.B. Dingle, A 211, 38 (1952).
68.
68.R.C. Ashoori, Nature 379, 413 (1996).
http://dx.doi.org/10.1038/379413a0
69.
69.C.A. Taylor, in Music and Mathematics: From Pythagoras to Fractals, edited by J. Fauvel, R. Flood, and R. Wilson (Oxford University Press, New York, 2003);
69.C.A. Taylor, Exploring Music: The Science and Technology of Tones and Tunes (CRC Press, Boca Raton, 1992);
69.C.A. Taylor, The Physics of Muscical Sounds (American Elsevier, New York, 1965).
70.
70.H. Ibach, J. Electron. Spectros. Related Phenom. 64/65, 819 (1993).
http://dx.doi.org/10.1016/0368-2048(93)80155-F
71.
71.R.F. Egerton, Private Communication (2015).
72.
72.M.S. Kushwaha, Europhys. Lett. (submitted).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944745
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944745
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944745
2016-03-18
2016-09-26

Abstract

We investigate a one-component, quasi-zero dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de-Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy-loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn’s theorem (GKT) in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energies capable of being explored with the FIR, Raman, and/or electron-energy-loss spectroscopy. This implies that either of these probes is competent in observing the localized magnetoplasmons in the system. As an application of the rigorous analytical diagnosis of the system, we have presented various pertinent single-particle, such as Fock-Darwin spectrum, Fermi energy, zigzag excitation spectrum, and magneto-optical transitions, and the many-particle phenomena, such as magneto-optical absorption, Raman intensity, and electron energy-loss probability. In the latter, the energy position of the resonance peaks is observed to be independent of the electron-electron interactions and hence of the number of electrons in the quantum dot in compliance with the GKT. It is found that both confinement potential and magnetic field play a decisive role in influencing the aforementioned many-particle phenomena. Specifically, increasing (decreasing) the strength of the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots and results into a blue (red) shift in the respective spectra. Intensifying the magnetic field has two-fold effects in the resonance spectra associated with all three spectroscopies considered here: the lower resonance peak observes a red shift, whereas the higher one experiences a blue shift. This is a unique and intriguing behavior observed in the quantum dots with complete confinement. A deeper insight into the physics of the quantum dots is paving the way for their implementation in such diverse fields as quantum computing and medical imaging.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944745.html;jsessionid=nWfIymD8cZB2RqEZpDgnvrQs.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944745&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944745&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944745'
Right1,Right2,Right3,