Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944760
1.
1.D. E. Brehl and T. A. Dow, Precis. Eng. 32, 153 (2008).
http://dx.doi.org/10.1016/j.precisioneng.2007.08.003
2.
2.D. E. Brehl and T. A. Dow, Proc ASPE. 40 (2007).
3.
3.C.X. Ma, E. Shamoto, and T. Moriwaki, Key Eng. Mater. 291-292, 443 (2005).
http://dx.doi.org/10.4028/www.scientific.net/KEM.291-292.443
4.
4.A. Chatterjee, A.A. Polycarpou, J.R. Abelson, and P. Bellon, Wear 268, 677 (2010).
http://dx.doi.org/10.1016/j.wear.2009.11.001
5.
5.P. Zhang, H. Zhao, C. Shi, L. Zhang, H. Huang, and L. Ren, Appl. Surf. Sci. 280, 751 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.05.056
6.
6.C. Zhang, P. Feng, and J. Zhang, Int. J. Mach. Tools Manuf. 64, 38 (2013).
http://dx.doi.org/10.1016/j.ijmachtools.2012.07.009
7.
7.M. Xiao, S. Karube, T. Soutome, and K. Sato, Int. J. Mach. Tools Manuf. 42, 1677 (2002).
http://dx.doi.org/10.1016/S0890-6955(02)00077-9
8.
8.M. Xiao, K. Sato, S. Karube, and T. Soutome, Int. J. Mach. Tools Manuf. 43, 1375 (2003).
http://dx.doi.org/10.1016/S0890-6955(03)00129-9
9.
9.C. Ma, E. Shamoto, T. Moriwaki, Y. Zhang, and L. Wang, Int. J. Mach. Tools Manuf. 45, 1295 (2005).
http://dx.doi.org/10.1016/j.ijmachtools.2005.01.011
10.
10.Y. Yang, H. Zhao, L. Zhang, M. Shao, H. Liu, and H. Huang, AIP Adv. 3, 102106 (2013).
http://dx.doi.org/10.1063/1.4824625
11.
11.Z.-C. Lin and J.-C. Huang, J. Mater. Process. Technol. 201, 477 (2008).
http://dx.doi.org/10.1016/j.jmatprotec.2007.11.259
12.
12.S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33, 7983 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.7983
13.
13.Q.X. Pei, C. Lu, H.P. Lee, and Y.W. Zhang, Nanoscale Res. Lett. 4, 444 (2009).
http://dx.doi.org/10.1007/s11671-009-9268-z
14.
14.S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
15.
15.L. Zhang and H. Tanaka, Wear 211, 44 (1997).
http://dx.doi.org/10.1016/S0043-1648(97)00073-2
16.
16.S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
17.
17.J. Li, Model. Simul. Mater. Sci. Eng. 11, 173 (2003).
http://dx.doi.org/10.1088/0965-0393/11/2/305
18.
18.S. Jun, Y. Lee, S.Y. Kim, and S. Im, Nanotechnology 15, 1169 (2004).
http://dx.doi.org/10.1088/0957-4484/15/9/011
19.
19.J.H.L. Pang, 65 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944760
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944760
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944760
2016-03-21
2016-09-30

Abstract

It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944760.html;jsessionid=JQN6n9QtzJiOBeWzpoZ-6SRY.x-aip-live-06?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944760&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944760&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944760'
Right1,Right2,Right3,