Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944815
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.L. Banszerus, M. Schmitz, S. Engels, M. Goldsche, K. Watanabe, T. Taniguchi, B. Beschoten, and C. Stampfer, “Ballistic transport exceeding 28 um in cvd grown graphene,” arxiv1511, 08601 (2015).
3.
3.A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
4.
4.J. Nilsson, A. H. C. Neto, N. M. R. Peres, and F. Guinea, “Electron-electron interactions and the phase diagram of a graphene bilayer,” Phys. Rev. B 73, 214418 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.214418
5.
5.J.-W. Jiang and H. S. Park, “A gaussian treatment for the friction issue of lennard-jones potential in layered materials: Application to friction between graphene, mos2, and black phosphorus,” J. Appl. Phys. 117, 124304 (2015).
http://dx.doi.org/10.1063/1.4916538
6.
6.E. McCann and V. I. Fal’ko, “Landau-level degeneracy and quantum hall effect in graphite bilayer,” Phys. Rev. Lett. 96, 086805 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.086805
7.
7.H. Min and A. H. MacDonald, “Chiral decomposition in the electronic structure of graphene multilayers,” Phys. Rev. B 77, 155416 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.155416
8.
8.Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy,” Phys. Rev. Lett. 102, 037403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.037403
9.
9.K. S. Kim, A. L. Walter, L. Moreschini, T. Seyller, K. Horn, E. Rotenberg, and A. Bostwick, “Coexisting massive and massless dirac fermions in symmetry-broken bilayer graphene,” Nature Mater. 12, 887 (2013).
http://dx.doi.org/10.1038/nmat3717
10.
10.D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: Evidence for graphane,” Science 323, 610 (2009).
http://dx.doi.org/10.1126/science.1167130
11.
11.R. E. Mapasha, A. M. Ukpong, and N. Chetty, “Ab initio studies of hydrogen adatoms on bilayer graphene,” Phys. Rev. B 85, 205402 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205402
12.
12.S.-M. Choi, S.-H. Jhi, and Y.-W. Son, “Controlling energy gap of bilayer graphene by strain,” Nano Lett. 10, 3486 (2010).
http://dx.doi.org/10.1021/nl101617x
13.
13.P. L. de Andres, R. Ram ı´rez, and J. A. Vergés, “Strong covalent bonding between two graphene layers,” Phys. Rev. B 77, 045403 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045403
14.
14.Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, “Landau-level splitting in graphene in high magnetic fields,” Phys. Rev. Lett. 96, 136806 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.136806
15.
15.J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nature Mater. 7, 151 (2007).
http://dx.doi.org/10.1038/nmat2082
16.
16.R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, “Broken-symmetry states in doubly gated suspended bilayer graphene,” Science 330, 812 (2010).
http://dx.doi.org/10.1126/science.1194988
17.
17.T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure of bilayer graphene,” Science 313, 951 (2006).
http://dx.doi.org/10.1126/science.1130681
18.
18.Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459, 820 (2009).
http://dx.doi.org/10.1038/nature08105
19.
19.E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. C. Neto, “Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99, 216802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216802
20.
20.M. T. Allen, J. Martin, and A. Yacoby, “Gate-defined quantum confinement in suspended bilayer graphene,” Nature Commun. 3, 934 (2012).
http://dx.doi.org/10.1038/ncomms1945
21.
21.D.-H. Oh, B. G. Shin, and J. R. Ahn, “Band engineering of bilayer graphene by metal atoms: First-principles calculations,” Appl. Phys. Lett. 96, 231916 (2010).
http://dx.doi.org/10.1063/1.3451465
22.
22.E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B 74, 161403(R) (2006).
http://dx.doi.org/10.1103/PhysRevB.74.161403
23.
23.A. A. Avetisyan, B. Partoens, and F. M. Peeters, “Electric field tuning of the band gap in graphene multilayers,” Phys. Rev. B 79, 035421 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035421
24.
24.E. S. Morell and P. Vargas, “Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields,” Phys. Rev. B 84, 195421 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195421
25.
25.J. M. Soler, E. Artacho, J. Gale, D. A. Garacia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, “The siesta method for ab initio order-n materials simulation,” J. Phys.: Condens. Matter 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
26.
26.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
27.
27.N. Troullier and J. L. Martins, “Efficient pseudopotentials for plane-wave calculations,” Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
28.
28.D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,” Phys. Rev. Lett. 43, 1494 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.1494
29.
29.H. J. Monkhorst and J. D. Pack, “Special points for brillouin-zone integrations,” Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
30.
30.F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206 (2008).
http://dx.doi.org/10.1126/science.1152793
31.
31.A. N. Kolmogorov and V. H. Crespi, “Registry-dependent interlayer potential for graphitic systems,” Phys. Rev. B 71, 235415 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235415
32.
32.L. Yang, “First-principles study of the optical absorption spectra of electrically gated bilayer graphene,” Phys. Rev. B 81, 155445 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155445
33.
33.F. Guinea, A. H. C. Neto, and N. M. R. Peres, “Electronic states and landau levels in graphene stacks,” Phys. Rev. B 73, 245426 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245426
34.
34.C.-R. Wang, W.-S. Lu, L. Hao, W.-L. Lee, T.-K. Lee, F. Lin, I.-C. Cheng, and J.-Z. Chen, “Enhanced thermoelectric power in dual-gated bilayer graphene,” Phys. Rev. Lett. 107, 186602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.186602
35.
35.R. Ma, L. Sheng, M. Liu, and D. N. Sheng, “Stacking-order dependence in thermoelectric transport of biased trilayer graphene,” Phys. Rev. B 86, 115414 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115414
36.
36.H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald, “Ab initio theory of gate induced gaps in graphene bilayers,” Phys. Rev. B 75, 155115 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155115
37.
37.P. Gava, M. Lazzeri, A. M. Saitta, and F. Mauri, “Ab initio study of gap opening and screening effects in gated bilayer graphene,” Phys. Rev. B 79, 165431 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165431
38.
38.B. Mohan, A. Kumar, and P. K. Ahluwalia, “A first principle study of interband transitions and electron energy loss in mono and bilayer graphene: Effect of external electric field,” Physica E 44, 1670 (2012).
http://dx.doi.org/10.1016/j.physe.2012.04.017
39.
39.B. R. K. Nanda and S. Satpathy, “Strain and electric field modulation of the electronic structure of bilayer graphene,” Phys. Rev. B 80, 165430 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165430
40.
40.L. M. Zhang, Z. Q. Li, D. N. Basov, M. M. Fogler, Z. Hao, and M. C. Martin, “Determination of the electronic structure of bilayer graphene from infrared spectroscopy,” Phys. Rev. B 78, 235408 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235408
41.
41.Y. Guo, W. Guo, and C. Chen, “Tuning field-induced energy gap of bilayer graphene via interlayer spacing,” Appl. Phys. Lett. 92, 243101 (2008).
http://dx.doi.org/10.1063/1.2943414
42.
42.J. Jung and A. H. MacDonald, “Accurate tight-binding models for the π bands of bilayer graphene,” Phys. Rev. B 89, 035405 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.035405
43.
43.R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
44.
44.K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101, 196405 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.196405
45.
45.E. V. Castro, N. M. R. Peres, T. Stauber, and N. A. P. Silva, “Low-density ferromagnetism in biased bilayer graphene,” Phys. Rev. Lett. 100, 186803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.186803
46.
46.R.-N. Wang, M. Yang, G.-Y. Dong, S.-F. Wang, G.-S. Fu, and J.-L. Wang, “Strain and electric field co-modulation of electronic properties of bilayer boronitrene,” J. Phys.: Condens. Matter 28, 055302 (2016).
http://dx.doi.org/10.1088/0953-8984/28/5/055302
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944815
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944815
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944815
2016-03-21
2016-12-10

Abstract

We investigate the spatial redistribution of the electron density in bilayer graphene in the presence of an interlayer bias within density functional theory. It is found that the interlayer charge redistribution is inhomogeneous between the upper and bottom layers and the transferred charge from the upper layer to the bottom layer linearly increases with the external voltage which further makes the gap at K point linearly increase. However, the band gap will saturate to 0.29 eV in the strong-field regime, but it displays a linear field dependence at the weak-field limit. Due to the AB-stacked way, two carbon atoms per unit cell in the same layer are different and there is also a charge transfer between them, making the widths of valence bands reduced. In the bottom layer, the charge transfers from the direct atoms which directly face another carbon atom to the indirect atoms facing the center of the hexagon on the opposite layer, while the charge transfers from the indirect atoms to the direct atoms in the upper layer. Furthermore, there is a diploe between the upper and bottom layers which results in the reduction of the interlayer hopping interaction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944815.html;jsessionid=ZMCnuAWMg5w4xNCkbxVdSXHv.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944815&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944815&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944815'
Right1,Right2,Right3,