Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S.-W. Cheong and M. Mostovoy, Nature Materials 6, 1320 (2007).
2.W. Eerenstein and N. D. Mathur, Nature 442, 759765 (2006).
3.K. F. Wang, J.-M. Liu, and Z. F. Ren, Advances in Physics 58, 321448 (2009).
4.G. Catalan and J. F. Scott, Advanced Materials 21, 24632485 (2009).
5.D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, Physical Review B 76, 024116 (2007).
6.H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, C. B. Eom, Y. H. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, Applied Physics Letters 92, 062910 (2008).
7.T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, and A. Morimoto, Applied Physics Letters 94, 112904 (2009).
8.M. A. Basith, O. Kurni, M. S. Alam, B. L. Sinha, and B. Ahmmad, Journal of Applied Physics 115, 024102 (2014).
9.T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J. L. Jones, J. E. Daniels, and D. Damjanovic, Journal of American Ceramic Society 97, 19932011 (2014).
10.I. Sosnowska, T. P. Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982).
11.T.-J. Park, C. G. Papaefthymiou, J. A. Viescas, R. A. Moodenbaugh, and S. S. Wong, Nano Letters 7, 766772 (2007).
12.F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T. T. Xu, J. He, C. Yue, and J. Zhu, Scientific Reports 3, 2907 (2013).
13.M. Hasan, M. F. Islam, R. Mahbub, M. S. Hossain, and M. A. Hakim, Materials Research Bulletin 73, 179186 (2016).
14.B. Bhushan, D. Das, A. Priyam, N. Y. Vasanthacharya, and S. Kumar, Materials Chemistry and Physics 153, 144149 (2012).
15.Y. Guoa, P. Xiaoa, R. Wena, Y. Wana, Q. Zhenga, D. Shib, K. H. Lamb, M. Liu, and D. Lin, Journal of Materials Chemistry C 3, 58115824 (2015).
16.V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, L. Jian, A. L. Kholkin, A. M. L. Lopes, Y. G. Pogorelov, J. P. Araujo, and M. Maglione, Journal of Applied Physics 103, 024105 (2008).
17.C. Yanga, J.-S. Jianga, F.-Z. Qiana, D.-M. Jianga, C.-M. Wanga, and W.-G. Zhangb, Journal of Alloys and Compounds 507, 2932 (2010).
18.A. R. Makhdoom, M. J. Akhtar, M. A. Rafiq, and M. M. Hassan, Ceramics International 38, 38293834 (2012).
19.R. Mahbub, T. Fakhrul, M. F. Islam, M. Hasan, A. Hussain, M. A. Matin, and M. A. Hakim, Acta Metallurgica Sinica (English Letters) 28(8), 958964 (2015).
20.P. Levy, F. Parisi, G. Polla, D. Vega, G. Leyva, H. Lanza, R. S. Freitas, and L. Ghivelder, Physical Review B 62, 6437 (2000).
21.I. G. Deac, J. F. Mitchell, and P. Schiffer, Physical Review B 63, 172408 (2001).
22.W. Hu, Y. Chen, H. Yuan, G. Li, Y. Qiao, Y. Qin, and S. Feng, Journal of Physical Chemistry C 115, 88698875 (2011).
23.M. Valant, A.-K. Axelsson, and N. Alford, Chemistry of Materials 19, 54315436 (2007).
24.J. Lu, L. J. Qiao, P. Z. Fu, and Y. C. Wu, Journal of Crystal Growth 318, 936941 (2011).
25.G. Rojas-George, J. Silva, R. Castan¯eda, D. Lardizábal, O. A. Graeve, L. Fuentes, and A. Reyes-Rojas, Materials Chemistry and Physics 146, 7381 (2014).
26.X. J. Xi, S. Y. Wang, W. F. Liu, H. J. Wang, F. Guo, X. Wang, J. Gao, and D. J. Li, Journal of Magnetism and Magnetic Materials 355, 259264 (2014).
27.R. D. Shannon, Acta Crystallographica Section A 32(5), 751767 (1976).
28.S. M. Selbach, T. Tybell, M.-A. Einarsrud, and T. Grande, Chemistry of Materials 19, 64786484 (2007).
29.N. S. McIntyre and D. G. Zetaruk, Analytical Chemistry 49, 15211529 (1977).
30.H. Zhang, W. Liu, P. Wu, X. Hai, M. Guo, X. Xi, J. Gao, X. Wang, F. Guo, X. Xu, C. Wang, G. Liu, W. Chue, and S. Wang, Nanoscale 6, 1083110838 (2014).
31.M. A. Basith, D.-T. Ngo, A. Quader, M. A. Rahman, B. L. Sinha, B. Ahmmad, F. Hirosed, and K. Mølhaveb, Nanoscale 6, 1433614342 (2014).
32.A. R. Makhdoom, M. J. Akhtar, M. A. Rafiq, M. Siddique, M. Iqbal, and M. M. Hasan, AIP Advances 4, 037113 (2014).
33.K. Chakrabarti, K. Das, B. Sarkar, S. Ghosh, and S. K. De, Applied Physics Letters 101, 042401 (2012).
34.S. Godara and B. Kumar, Ceramics International 44, 69126919 (2015).
35.G. F. Cheng, Y. H. Huang, J. J. Ge, B. Lv, and X. S. Wu, Journal of Applied Physics 111, 07C707 (2012).
36.O. D. Jayakumar, S. N. Achary, K. G. Girija, A. K. Tyagi, C. Sudakar, G. Lawes, R. Naik, J. Nisar, X. Peng, and R. Ahuja, Applied Physics Letters 96, 032903 (2010).
37.R. Das, T. Sarkar, and K. Mandal, Journal of Physics D: Applied Physics 45, 455002 (2012).
38.J. Kanamori, Journal of Physics and Chemistry of Solids 10, 8798 (1959).
39.J. B. Goodenough, Journal of Physics and Chemistry of Solids 6, 287297 (1958).
40.S. Chikazumi, Physics of Ferromagnetism, Second ed. (Oxford University Press Inc, New York, 2009).
41.M. A. Basith, F. A. Khan, B. Ahmmad, S. Kubota, F. Hirose, D.-T. Ngo, Q.-H. Tran, and K. Mølhave, Journal of Applied Physics 118, 023901 (2015).
42.Bashir Ahmmad, M. Z. Islam, Areef Billah, and M. A. Basith, J. Phys. D: Appl. Phys. 49, 095001 (2016).
43.Y. Zhang, W. Li, H. Li, and X. Zhang, Journal of Physics D: Applied Physics 47, 015002 (2014).
44.M. R. Fitzsimmons, B. J. Kirby, S. Roy, Z.-P. Li, I. V. Roshchin, S. K. Sinha, and I. K. Schuller, Physical Review B 75, 214412 (2007).
45.L. W. Martin, Y.-H. Chu, M. B. Holcomb, M. Huijben, P. Yu, S.-J. Han, D. Lee, S. X. Wang, and R. Ramesh, Nano Letters 8, 20502055 (2008).
46.B. Maji, M. K. Ray, K. G. Suresh, and S. Banerjee, Journal of Applied Physics 116, 213913 (2014).
47.B. K. Banerjee, Physics Letters 12, 1617 (1964).
48.M. Tokunaga, M. Azuma, and Y. Shimakawa, Journal of Physics: Conference Series 200, 012206 (2010).
49.K. Ohoyama, S. Lee, S. Yoshii, Y. Narumi, T. Morioka, H. Nojiri, G. S. Jeon, S.-W. Cheong, and J.-G. Park, Journal of the Physical Society of Japan 80, 125001 (2011).
50.Z. Cheng, X. Wang, S. Dou, H. Kimura, and K. Ozawa, Physical Review B 77, 092101 (2008).
51.R. Das and K. Mandal, journal of Magnetism and Magnetic Materials 324, 19131918 (2012).
52.A. Tschöpe, E. Sommer, and R. Birringer, Solid State Ionics 139, 255265 (2001).
53.U. Brossmann, R. Würschum, U. Södervall, and H.-E. Schaefer, Journal of Applied Physics 85, 7646 (1999).
54.A. Tschöpe and R. Birringer, Journal of Electroceramics 7, 169177 (2001).
55.Z. Hua, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X. Liu, B. Yu, and X. Zhao, Solid State Communications 150, 10881091 (2010).
56.W. Xing, Y. Ma, Z. Ma, Y. Bai, J. Chen, and S. Zhao, Smart Materials and Structures 23, 085030 (2014).
57.T. Yan, Z.-G. Shen, W.-W. Zhang, and J.-F. Chen, Materials Chemistry and Physics 98, 450455 (2006).
58.L. Caron, Z. Q. Oub, T. T. Nguyen, D. T. C. Thanh, O. Tegus, and E. Bruck, Journal of Magnetism and Magnetic Materials 321, 35593566 (2009).
59.J. Shen, Zhi-YiXu, H. Zhang, Xin-QiZheng, J.-F. Wua, F.-X. Hub, J.-R. Sun, and B.-g. Shen, Journal of Magnetism and Magnetic Materials 323, 29492952 (2011).

Data & Media loading...


Article metrics loading...



Improvement in magnetic and electrical properties of multiferroic BiFeO in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived BiBaFeOnanoparticles of different sizes ranging from ∼ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeOnanoparticles compared to its undoped counterpart. The saturation magnetization of BiBaFeOnanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ∼ 49 nm BiBaFeOnanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd