Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944817
1.
1.S.-W. Cheong and M. Mostovoy, Nature Materials 6, 1320 (2007).
http://dx.doi.org/10.1038/nmat1804
2.
2.W. Eerenstein and N. D. Mathur, Nature 442, 759765 (2006).
http://dx.doi.org/10.1038/nature05023
3.
3.K. F. Wang, J.-M. Liu, and Z. F. Ren, Advances in Physics 58, 321448 (2009).
http://dx.doi.org/10.1080/00018730902920554
4.
4.G. Catalan and J. F. Scott, Advanced Materials 21, 24632485 (2009).
http://dx.doi.org/10.1002/adma.200802849
5.
5.D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, Physical Review B 76, 024116 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.024116
6.
6.H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, C. B. Eom, Y. H. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, and D. G. Schlom, Applied Physics Letters 92, 062910 (2008).
http://dx.doi.org/10.1063/1.2842418
7.
7.T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, and A. Morimoto, Applied Physics Letters 94, 112904 (2009).
http://dx.doi.org/10.1063/1.3098408
8.
8.M. A. Basith, O. Kurni, M. S. Alam, B. L. Sinha, and B. Ahmmad, Journal of Applied Physics 115, 024102 (2014).
http://dx.doi.org/10.1063/1.4861151
9.
9.T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J. L. Jones, J. E. Daniels, and D. Damjanovic, Journal of American Ceramic Society 97, 19932011 (2014).
http://dx.doi.org/10.1111/jace.12982
10.
10.I. Sosnowska, T. P. Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982).
http://dx.doi.org/10.1088/0022-3719/15/23/020
11.
11.T.-J. Park, C. G. Papaefthymiou, J. A. Viescas, R. A. Moodenbaugh, and S. S. Wong, Nano Letters 7, 766772 (2007).
http://dx.doi.org/10.1021/nl063039w
12.
12.F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T. T. Xu, J. He, C. Yue, and J. Zhu, Scientific Reports 3, 2907 (2013).
13.
13.M. Hasan, M. F. Islam, R. Mahbub, M. S. Hossain, and M. A. Hakim, Materials Research Bulletin 73, 179186 (2016).
http://dx.doi.org/10.1016/j.materresbull.2015.09.007
14.
14.B. Bhushan, D. Das, A. Priyam, N. Y. Vasanthacharya, and S. Kumar, Materials Chemistry and Physics 153, 144149 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2012.04.037
15.
15.Y. Guoa, P. Xiaoa, R. Wena, Y. Wana, Q. Zhenga, D. Shib, K. H. Lamb, M. Liu, and D. Lin, Journal of Materials Chemistry C 3, 58115824 (2015).
http://dx.doi.org/10.1039/C5TC00507H
16.
16.V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, L. Jian, A. L. Kholkin, A. M. L. Lopes, Y. G. Pogorelov, J. P. Araujo, and M. Maglione, Journal of Applied Physics 103, 024105 (2008).
http://dx.doi.org/10.1063/1.2836802
17.
17.C. Yanga, J.-S. Jianga, F.-Z. Qiana, D.-M. Jianga, C.-M. Wanga, and W.-G. Zhangb, Journal of Alloys and Compounds 507, 2932 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.07.193
18.
18.A. R. Makhdoom, M. J. Akhtar, M. A. Rafiq, and M. M. Hassan, Ceramics International 38, 38293834 (2012).
http://dx.doi.org/10.1016/j.ceramint.2012.01.032
19.
19.R. Mahbub, T. Fakhrul, M. F. Islam, M. Hasan, A. Hussain, M. A. Matin, and M. A. Hakim, Acta Metallurgica Sinica (English Letters) 28(8), 958964 (2015).
http://dx.doi.org/10.1007/s40195-015-0279-8
20.
20.P. Levy, F. Parisi, G. Polla, D. Vega, G. Leyva, H. Lanza, R. S. Freitas, and L. Ghivelder, Physical Review B 62, 6437 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.6437
21.
21.I. G. Deac, J. F. Mitchell, and P. Schiffer, Physical Review B 63, 172408 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.172408
22.
22.W. Hu, Y. Chen, H. Yuan, G. Li, Y. Qiao, Y. Qin, and S. Feng, Journal of Physical Chemistry C 115, 88698875 (2011).
http://dx.doi.org/10.1021/jp1103142
23.
23.M. Valant, A.-K. Axelsson, and N. Alford, Chemistry of Materials 19, 54315436 (2007).
http://dx.doi.org/10.1021/cm071730+
24.
24.J. Lu, L. J. Qiao, P. Z. Fu, and Y. C. Wu, Journal of Crystal Growth 318, 936941 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.10.181
25.
25.G. Rojas-George, J. Silva, R. Castan¯eda, D. Lardizábal, O. A. Graeve, L. Fuentes, and A. Reyes-Rojas, Materials Chemistry and Physics 146, 7381 (2014).
http://dx.doi.org/10.1016/j.matchemphys.2014.02.044
26.
26.X. J. Xi, S. Y. Wang, W. F. Liu, H. J. Wang, F. Guo, X. Wang, J. Gao, and D. J. Li, Journal of Magnetism and Magnetic Materials 355, 259264 (2014).
http://dx.doi.org/10.1016/j.jmmm.2013.12.036
27.
27.R. D. Shannon, Acta Crystallographica Section A 32(5), 751767 (1976).
http://dx.doi.org/10.1107/S0567739476001551
28.
28.S. M. Selbach, T. Tybell, M.-A. Einarsrud, and T. Grande, Chemistry of Materials 19, 64786484 (2007).
http://dx.doi.org/10.1021/cm071827w
29.
29.N. S. McIntyre and D. G. Zetaruk, Analytical Chemistry 49, 15211529 (1977).
http://dx.doi.org/10.1021/ac50019a016
30.
30.H. Zhang, W. Liu, P. Wu, X. Hai, M. Guo, X. Xi, J. Gao, X. Wang, F. Guo, X. Xu, C. Wang, G. Liu, W. Chue, and S. Wang, Nanoscale 6, 1083110838 (2014).
http://dx.doi.org/10.1039/C4NR02557A
31.
31.M. A. Basith, D.-T. Ngo, A. Quader, M. A. Rahman, B. L. Sinha, B. Ahmmad, F. Hirosed, and K. Mølhaveb, Nanoscale 6, 1433614342 (2014).
http://dx.doi.org/10.1039/C4NR03150D
32.
32.A. R. Makhdoom, M. J. Akhtar, M. A. Rafiq, M. Siddique, M. Iqbal, and M. M. Hasan, AIP Advances 4, 037113 (2014).
http://dx.doi.org/10.1063/1.4869081
33.
33.K. Chakrabarti, K. Das, B. Sarkar, S. Ghosh, and S. K. De, Applied Physics Letters 101, 042401 (2012).
http://dx.doi.org/10.1063/1.4738992
34.
34.S. Godara and B. Kumar, Ceramics International 44, 69126919 (2015).
http://dx.doi.org/10.1016/j.ceramint.2015.01.145
35.
35.G. F. Cheng, Y. H. Huang, J. J. Ge, B. Lv, and X. S. Wu, Journal of Applied Physics 111, 07C707 (2012).
36.
36.O. D. Jayakumar, S. N. Achary, K. G. Girija, A. K. Tyagi, C. Sudakar, G. Lawes, R. Naik, J. Nisar, X. Peng, and R. Ahuja, Applied Physics Letters 96, 032903 (2010).
http://dx.doi.org/10.1063/1.3280043
37.
37.R. Das, T. Sarkar, and K. Mandal, Journal of Physics D: Applied Physics 45, 455002 (2012).
http://dx.doi.org/10.1088/0022-3727/45/45/455002
38.
38.J. Kanamori, Journal of Physics and Chemistry of Solids 10, 8798 (1959).
http://dx.doi.org/10.1016/0022-3697(59)90061-7
39.
39.J. B. Goodenough, Journal of Physics and Chemistry of Solids 6, 287297 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90107-0
40.
40.S. Chikazumi, Physics of Ferromagnetism, Second ed. (Oxford University Press Inc, New York, 2009).
41.
41.M. A. Basith, F. A. Khan, B. Ahmmad, S. Kubota, F. Hirose, D.-T. Ngo, Q.-H. Tran, and K. Mølhave, Journal of Applied Physics 118, 023901 (2015).
http://dx.doi.org/10.1063/1.4926424
42.
42.Bashir Ahmmad, M. Z. Islam, Areef Billah, and M. A. Basith, J. Phys. D: Appl. Phys. 49, 095001 (2016).
http://dx.doi.org/10.1088/0022-3727/49/9/095001
43.
43.Y. Zhang, W. Li, H. Li, and X. Zhang, Journal of Physics D: Applied Physics 47, 015002 (2014).
http://dx.doi.org/10.1088/0022-3727/47/1/015002
44.
44.M. R. Fitzsimmons, B. J. Kirby, S. Roy, Z.-P. Li, I. V. Roshchin, S. K. Sinha, and I. K. Schuller, Physical Review B 75, 214412 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.214412
45.
45.L. W. Martin, Y.-H. Chu, M. B. Holcomb, M. Huijben, P. Yu, S.-J. Han, D. Lee, S. X. Wang, and R. Ramesh, Nano Letters 8, 20502055 (2008).
http://dx.doi.org/10.1021/nl801391m
46.
46.B. Maji, M. K. Ray, K. G. Suresh, and S. Banerjee, Journal of Applied Physics 116, 213913 (2014).
http://dx.doi.org/10.1063/1.4903770
47.
47.B. K. Banerjee, Physics Letters 12, 1617 (1964).
http://dx.doi.org/10.1016/0031-9163(64)91158-8
48.
48.M. Tokunaga, M. Azuma, and Y. Shimakawa, Journal of Physics: Conference Series 200, 012206 (2010).
http://dx.doi.org/10.1088/1742-6596/200/1/012206
49.
49.K. Ohoyama, S. Lee, S. Yoshii, Y. Narumi, T. Morioka, H. Nojiri, G. S. Jeon, S.-W. Cheong, and J.-G. Park, Journal of the Physical Society of Japan 80, 125001 (2011).
http://dx.doi.org/10.1143/JPSJ.80.125001
50.
50.Z. Cheng, X. Wang, S. Dou, H. Kimura, and K. Ozawa, Physical Review B 77, 092101 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.092101
51.
51.R. Das and K. Mandal, journal of Magnetism and Magnetic Materials 324, 19131918 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.01.022
52.
52.A. Tschöpe, E. Sommer, and R. Birringer, Solid State Ionics 139, 255265 (2001).
http://dx.doi.org/10.1016/S0167-2738(01)00678-6
53.
53.U. Brossmann, R. Würschum, U. Södervall, and H.-E. Schaefer, Journal of Applied Physics 85, 7646 (1999).
http://dx.doi.org/10.1063/1.370567
54.
54.A. Tschöpe and R. Birringer, Journal of Electroceramics 7, 169177 (2001).
http://dx.doi.org/10.1023/A:1014483028210
55.
55.Z. Hua, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X. Liu, B. Yu, and X. Zhao, Solid State Communications 150, 10881091 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.03.015
56.
56.W. Xing, Y. Ma, Z. Ma, Y. Bai, J. Chen, and S. Zhao, Smart Materials and Structures 23, 085030 (2014).
http://dx.doi.org/10.1088/0964-1726/23/8/085030
57.
57.T. Yan, Z.-G. Shen, W.-W. Zhang, and J.-F. Chen, Materials Chemistry and Physics 98, 450455 (2006).
http://dx.doi.org/10.1016/j.matchemphys.2005.09.058
58.
58.L. Caron, Z. Q. Oub, T. T. Nguyen, D. T. C. Thanh, O. Tegus, and E. Bruck, Journal of Magnetism and Magnetic Materials 321, 35593566 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.06.086
59.
59.J. Shen, Zhi-YiXu, H. Zhang, Xin-QiZheng, J.-F. Wua, F.-X. Hub, J.-R. Sun, and B.-g. Shen, Journal of Magnetism and Magnetic Materials 323, 29492952 (2011).
http://dx.doi.org/10.1016/j.jmmm.2011.05.042
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944817
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944817
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944817
2016-03-21
2016-09-26

Abstract

Improvement in magnetic and electrical properties of multiferroic BiFeO in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived BiBaFeOnanoparticles of different sizes ranging from ∼ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeOnanoparticles compared to its undoped counterpart. The saturation magnetization of BiBaFeOnanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ∼ 49 nm BiBaFeOnanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944817.html;jsessionid=vSr3o-mgI1gVD4R_g0LvJ2UO.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944817&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944817&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944817'
Right1,Right2,Right3,