Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J.-Y. Kwon, D.-J. Lee, and K.-B. Kim, Electron. Mater. Lett. 7, 1 (2011).
2.K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432 (2004).
3.T. Kamiya, K. Nomura, and H. Hosono, Sci. Tech. Adv. Mater. 11, 044305 (2010).
4.B. D. Ahn, H.-J. Jeon, J. Sheng, J. Park, and J.-S. Park, Semicond. Sci. Technol. 30, 064001 (2015).
5.J. F. Conley, IEEE Trans. Device Mater. Rel. 10 (2010).
6.S. H. Cho, M. K. Ryu, H.-O. Kim, O.-S. Kwon, E.-S. Park, Y.-S. Roh, C.-S. Hwang, and S.-H. K. Park, Phys. Status Solidi A 211, 2126 (2014).
7.J. Jang, D. G. Kim, D. M. Kim, S.-J. Choi, J.-H. Lim, J.-H. Lee, Y.-S. Kim, B. D. Ahn, and D. H. Kim, Appl. Phys. Lett. 105, 152108 (2014).
8.J. K. Jeong, J. Mater. 28, 2071 (2013).
9.J.-H. Shin, J.-S. Lee, C.-S. Hwang, S.-H. Ko Park, W.-S. Cheong, M. K. Ryu, C.-W. Byun, J.-I. Lee, and H. Chu, ETRI J. 31 (2009).
10.L.-C. Liu, J.-S. Chen, and J.-S. Jeng, Appl. Phys. Lett. 105, 023509 (2014).
11.K. H. Ji, J.-I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, C. S. Hwang, D. Lee, H. Hwang, and J. K. Jeong, Appl. Phys. Lett. 98, 103509 (2011).
12.Y. S. Rim, W. H. Jeong, D. L. Kim, H. S. Lim, K. M. Kim, and H. J. Kim, J. Mater. Chem. 22, 12491 (2012).
13.B.-Y. Su, S.-Y. Chu, Y.-D. Juang, and H.-C. Chen, Appl. Phys. Lett. 102, 192101 (2013).
14.D.-S. Han, D.-Y. Moon, Y.-J. Kang, J.-H. Park, and J.-W. Park, Curr. Appl. Phys. 13, S98 (2013).
15.G. H. Kim, W. H. Jeong, B. Du Ahn, H. S. Shin, H. J. Kim, H. J. Kim, M.-K. Ryu, K.-B. Park, J.-B. Seon, and S.-Y. Lee, Appl. Phys. Lett. 96, 163506 (2010).
16.H. Oh, S.-H. Ko Park, C.-S. Hwang, S. Yang, and M. Ki Ryu, Appl. Phys. Lett. 99, 022105 (2011).
17.J. S. Seo, J. H. Jeon, Y. H. Hwang, H. Park, M. Ryu, S. H. Park, and B. S. Bae, Sci. Rep. 3, 2085 (2013).
18.J.-H. Jeon, Y. H. Hwang, and B.-S. Bae, Electrochem. Solid-State Lett. 15, H123 (2012).
19.C. G. Choi, S.-J. Seo, and B.-S. Bae, ECS J. Solid State Sci. Technol. 11, H7 (2008).
20.K. Nomura, T. Kamiya, and H. Hosono, J. Soc. Inf. Disp. 18, 789 (2010).
21.Y. H. Hwang, H. G. Im, H. Park, Y. Y. Nam, and B. S. Bae, ECS J. Solid State Sci. Technol. 2, Q200 (2013).
22.M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett. 95, 063502 (2009).
23.T.-C. Chen, T.-C. Chang, C.-T. Tsai, T.-Y. Hsieh, S.-C. Chen, C.-S. Lin, M.-C. Hung, C.-H. Tu, J.-J. Chang, and P.-L. Chen, Appl. Phys. Lett. 97, 112104 (2010).
24.K. H. Ji, J.-I. Kim, H. Y. Jung, S. Y. Park, Y.-G. Mo, J. H. Jeong, J.-Y. Kwon, M.-K. Ryu, S. Y. Lee, R. Choi, and J. K. Jeong, J. Electrochem. Soc. 157, H983 (2010).

Data & Media loading...


Article metrics loading...



In order to improve the reliability of TFT, an AlO insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the AlO layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V 2+ toward the interface between the gate insulator and the semiconductor. The inserted AlO triple layer exhibits a noticeably low turn on voltage shift of −0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm2/V ⋅ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd