Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Ramspeck, S. Zimmermann, H. Nagel, A. Metz, Y. Gassenbauer, B. Birkmann, and A. Seidl, in Proceedings of the 27th European Photovoltaic Solar Energy Conference (WIP, Munich, 2012), p. 861.
2.J. Schmidt, A. G. Aberle, and R. Hezel, in Proceedings of the 26th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1997), p. 13.
3.S. W. Glunz, S. Rein, W. Warta, J. Knobloch, and W. Wettling, in Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion (WIP, Munich, 1998), p. 1343.
4.J. Schmidt and K. Bothe, Phys. Rev. B 69, 024107 (2004).
5.L. J. Geerligs and D. Macdonald, Appl. Phys. Lett. 85, 5227 (2004).
6.J. Schmidt, Prog. Photovolt. 13, 325 (2005).
7.F. Fertig, K. Krauß, and S. Rein, Phys. Status Solidi RRL 9, 41 (2014).
8.K. Krauss, F. Fertig, D. Menzel, and S. Rein, Energy Procedia 77, 599 (2015).
9.F. Kersten, P. Engelhart, H.-C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, and J.W. Müller, Solar Energy Materials and Solar Cells 142, 83 (2015).
10.W. Kwapil, A. Zuschlag, I. Reis, I. Schwirtlich, S. Meyer, R. Zierer, R. Krain, F. Kießling, M. Schumann, C. Schmid, and S. Riepe, in Proceedings of the 27th European Photovoltaic Solar Energy Conference (WIP, Munich, 2012), p. 627.
11.R. A. Sinton and A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).
12.S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, and R. Brendel, Phys. Stat. Sol. RRL 2, 245 (2008).
13.K. Bothe and J. Schmidt, J. Appl. Phys. 99, 013701 (2006).
14.R. Krain, S. Herlufsen, and J. Schmidt, Appl. Phys. Lett. 93, 152108 (2008).
15.D. Palmer, K. Bothe, and J. Schmidt, Phys. Rev. B 76, 035210 (2007).
16.F. Jiang, M. Stavola, A. Rohatgi, D. Kim, J. Holt, H. Altwater, and J. Kalejs, Appl. Phys. Lett. 83, 931 (2003).

Data & Media loading...


Article metrics loading...



We examine the carrier lifetime evolution of block-cast multicrystalline silicon (mc-Si) wafers under illumination (100 mW/cm2) at elevated temperature (75°C). Samples are treated with different process steps typically applied in industrial solar cell production. We observe a pronounced degradation in lifetime after rapid thermal annealing(RTA) at 900°C. However, we detect only a weak lifetime instability in mc-Si wafers which are RTA-treated at 650°C. After completion of the degradation, the lifetime is observed to recover and finally reaches carrier lifetimes comparable to the initial state. To explain the observed lifetime evolution, we suggest a defect model, where metal precipitates in the mc-Si bulk dissolve during the RTA treatment.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd