Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944855
1.
1.J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
http://dx.doi.org/10.1016/0022-4596(71)90091-0
2.
2.Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res 41, 337 (2011), http://dx.doi.org/10.1146/annurev-matsci-062910-100347.
http://dx.doi.org/10.1146/annurev-matsci-062910-100347
3.
3.N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, Nat Commun 6 (2015).
http://dx.doi.org/10.1038/ncomms8812
4.
4.H. Zhou, X. Cao, M. Jiang, S. Bao, and P. Jin, Laser Photon Rev 8, 617 (2014).
http://dx.doi.org/10.1002/lpor.201300214
5.
5.C. S. Reddy, E. H. W. Jr., S. W. Sr., Q. L. Williams, and R. R. Kalluru, Curr. Appl. Phys 9, 1195 (2009).
http://dx.doi.org/10.1016/j.cap.2009.01.012
6.
6.S.-J. Chang, J. B. Park, G. Lee, H. J. Kim, J.-B. Lee, T.-S. Bae, Y.-K. Han, T. J. Park, Y. S. Huh, and W.-K. Hong, Nanoscale 6, 8068 (2014).
http://dx.doi.org/10.1039/C4NR01118J
7.
7.Y. F. Wu, L. L. Fan, S. M. Chen, S. Chen, C. W. Zou, and Z. Y. Wu, AIP Advances 3, 042132 (2013).
http://dx.doi.org/10.1063/1.4802981
8.
8.J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, Phys. Rev. B 85, 020101 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.020101
9.
9.D. H. Kim and H. S. Kwok, Appl. Phys. Lett. 65, 3188 (1994).
http://dx.doi.org/10.1063/1.112476
10.
10.D. Li, M. Li, J. Pan, Y. Luo, H. Wu, Y. Zhang, and G. Li, ACS Appl. Mater. Interfaces 6, 6555 (2014), pMID: 24734771, http://dx.doi.org/10.1021/am500135d.
http://dx.doi.org/10.1021/am500135d
11.
11.G. Karaoglan-Bebek, M. N. F. Hoque, M. Holtz, Z. Fan, and A. A. Bernussi, Appl. Phys. Lett. 105, 201902 (2014).
http://dx.doi.org/10.1063/1.4902056
12.
12.K. L. Holman, T. M. McQueen, A. J. Williams, T. Klimczuk, P. W. Stephens, H. W. Zandbergen, Q. Xu, F. Ronning, and R. J. Cava, Phys. Rev. B 79, 245114 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245114
13.
13.K. Appavoo and R. F. Haglund, Nano Lett. 11, 1025 (2011).
http://dx.doi.org/10.1021/nl103842v
14.
14.J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, Nat Nano 7, 357 (2012).
http://dx.doi.org/10.1038/nnano.2012.70
15.
15.Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, Sci. Rep. 4, 4854 (2014).
http://dx.doi.org/10.1038/srep04854
16.
16.F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
http://dx.doi.org/10.1103/PhysRevLett.3.34
17.
17.B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, Adv. Mater 22, 5134 (2010).
http://dx.doi.org/10.1002/adma.201002868
18.
18.D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, ACS Photonics 2, 1306 (2015).
http://dx.doi.org/10.1021/acsphotonics.5b00249
19.
19.D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, J. Appl. Phys. 106, 083702 (2009).
http://dx.doi.org/10.1063/1.3245338
20.
20.K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, Nano Lett. 12, 780 (2012).
http://dx.doi.org/10.1021/nl203782y
21.
21.W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. Meyer, W. Niessner, D. Schalch, and A. Scharmann, Thin Solid Films 402, 226 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01603-0
22.
22.E. Strelcov, A. Tselev, I. Ivanov, J. D. Budai, J. Zhang, J. Z. Tischler, I. Kravchenko, S. V. Kalinin, and A. Kolmakov, Nano Lett. 12, 6198 (2012).
http://dx.doi.org/10.1021/nl303065h
23.
23.X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, Sci. Rep. 2, 466 (2012).
http://dx.doi.org/10.1038/srep00466
24.
24.C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, and A. Aldred, Phys. Rev. B 31, 1000 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.1000
25.
25.J. M. Booth and P. S. Casey, Phys. Rev. Lett. 103, 086402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.086402
26.
26.R. Bharathi, R. Naorem, and A. M. Umarji, J. Phys. D: Appl. Phys 48, 305103 (2015).
http://dx.doi.org/10.1088/0022-3727/48/30/305103
27.
27.V. B. Kamble, S. V. Bhat, and A. M. Umarji, J. Appl. Phys. 113, 244307 (2013).
http://dx.doi.org/10.1063/1.4812382
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4944855 for Raman IV and SEM.[Supplementary Material]
29.
29.D. Ruzmetov, D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan, Phys. Rev. B 79, 153107 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.153107
30.
30.A. Tselev, I. A. Lukyanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, and S. V. Kalinin, Nano Lett. 10, 4409 (2010).
http://dx.doi.org/10.1021/nl1020443
31.
31.M. Ghedira, H. Vincent, M. Marezio, and J. Launay, J. Solid State Chem. 22, 423 (1977).
http://dx.doi.org/10.1016/0022-4596(77)90020-2
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944855
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944855
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944855
2016-03-22
2016-09-30

Abstract

Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO. Hence the role of substitution doping in stabilizing the competing phases of VO in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO can be tuned by substitutional doping of VO with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO and W- doped VO as thin films.XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VOthin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size ∼ 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO, the transition temperature has reduced from 68 C to 25 C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944855.html;jsessionid=GFmFzdQznRkHMan_g0r7MQOL.x-aip-live-06?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944855&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944855&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944855'
Right1,Right2,Right3,