Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944908
1.
1.L. Binet and D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998).
http://dx.doi.org/10.1016/S0022-3697(98)00047-X
2.
2.R. Jangir, Tapas Ganguli, Pragya Tiwari, S. Porwal, Himanshu Srivastava, S. K. Rai, B. Q. Khattak, and S. M. Oak, Applied Surface Science 257, 9323-9328 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.05.039
3.
3.T. Harwing, F. Kelledonk, and S. Slappendel, J. Phys. Chem. Solids 39, 675 (1978).
http://dx.doi.org/10.1016/0022-3697(78)90183-X
4.
4.T. Harwing and F. Kelledonk, J. Solid State Chem. 24, 255 (1978).
http://dx.doi.org/10.1016/0022-4596(78)90017-8
5.
5.E.G. Villora, T. Atou, T. Sekiguchi, T. Sugawara, M. Kikuchi, and T. Fukuda, Solid State Commun. 120, 455 (2003).
http://dx.doi.org/10.1016/S0038-1098(01)00409-4
6.
6.Indranil Bhaumik, R. Bhatt, S. Ganesamoorthy, A. Saxena, A. K. Karnal, P. K. Gupta, A. K. Sinha, and S. K. Deb, Appl. Optics 50, 6006 (2011).
http://dx.doi.org/10.1364/AO.50.006006
7.
7.R. Jangir, S. Porwal, Pragya Tiwari, P. Mondal, S. K. Rai, Tapas Ganguli, S. M. Oak, and S. K. Deb, J. App. Phys. 112, 034307 (2012).
http://dx.doi.org/10.1063/1.4742048
8.
8.R. Jangir, Tapas Ganguli, S. Porwal, Pragya Tiwari, S. K. Rai, I. Bhaumik, L. M. Kukreja, P. K. Gupta, and S. K. Deb, J. App. Phys. 114(7), 074309 (2013).
http://dx.doi.org/10.1063/1.4818835
9.
9.N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 71, 933 (1997).
http://dx.doi.org/10.1063/1.119693
10.
10.M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, J. Appl. Phys. 77, 686 (1995).
http://dx.doi.org/10.1063/1.359055
11.
11.P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, Appl. Phys. Lett. 88, 153107 (2006).
http://dx.doi.org/10.1063/1.2193463
12.
12.F Wang, Z. H. Han, and L. M. Tong, Physica E 30, 150-154 (2005).
http://dx.doi.org/10.1016/j.physe.2005.08.001
13.
13.Emilio Nogales, Jose A. Garcia, Bianchi Mendez, and Javier Piqueras, Appl. Phys. Lett. 91, 133108 (2007).
http://dx.doi.org/10.1063/1.2790809
14.
14.E. Nogales, B. Sanchez, B. Mendez, and J. Piqueras, Superlattice Microstruct. 45, 156 (2009).
http://dx.doi.org/10.1016/j.spmi.2008.11.027
15.
15.Zhifu Liu, Toshinari Yamazaki, Yanbai Shen, Toshio Kikuta, Noriyuki Nakatani, and Yongxiang Li, Sensors. Sensors and Actuators B 129, 666670 (2008).
http://dx.doi.org/10.1016/j.snb.2007.09.055
16.
16.Yang Huang, Shuanglin Yue, Zhongli Wang, Qiang Wang, Chengying Shi, Z. Xu, X. D. Bai, Chengcun Tang, and Changzhi Gu, J. Phys. Chem. B 110, 796-800 (2006).
http://dx.doi.org/10.1021/jp055844p
17.
17.P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 89, 12114 (2006).
18.
18.Manoranjan Ghosh, R. S. Ningthoujam, R. K. Vatsa, D. Das, V. Nataraju, S. C. Gadkari, S. K. Gupta, and D. Bahadur, J. Appl. Phys. 110, 054309 (2011).
http://dx.doi.org/10.1063/1.3632059
19.
19.G. Faglia, C. Baratto, G. Sberveglieri, M. Zha, and A. Zappettini, Appl. Phys. Lett. 86, 011923 (2005).
http://dx.doi.org/10.1063/1.1849832
20.
20.J. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum,” J. Am. Chem. Soc. 40, 1361 (1918);
http://dx.doi.org/10.1021/ja02242a004
20.R. E. Rogers, in Coalbed Methane: Principles and Practice (Prentice Hall Petroleum Engineering, 2007), Chap. 3 (Sorption), pp. 143-189.
21.
21.P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 89, 12114 (2006).
22.
22.T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, and T. Honda, Appl. Phys. Lett. 103, 041910 (2013).
http://dx.doi.org/10.1063/1.4816759
23.
23.Yanbo Li, Takero Tokizono, Meiyong Liao, Miao Zhong, Yasuo Koide, Ichiro Yamada, and Jean-Jacques Delaunay, Adv. Funct. Mater. XX, 17 (2010).
24.
24.S.M. Prokes, W.E. Carlos, and E.R. Glaser, International Journal of Nanotechnology 5(4/5), 475487 (2008).
http://dx.doi.org/10.1504/IJNT.2008.017448
25.
25.C. Y. Zhi, X. D. Bai, and E. G. Wang, Appl. Phys. Lett. 85, 1802 (2004).
http://dx.doi.org/10.1063/1.1786374
26.
26.Jun Zhang, Feihong Jiang, and Lide Zhang, Physics Letters A 322, 363368 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.01.043
27.
27.Xu Xiang, Chuan-Bao Cao, and He-Sun Zhu, Journal of Crystal Growth 279, 122128 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.02.022
28.
28.K.F. Cai, S. Shen, C. Yan, and S. Bateman, Current Applied Physics 8, 363366 (2008).
http://dx.doi.org/10.1016/j.cap.2007.10.033
29.
29.F. Urbach, Wiener Ber. IIa 139, 363 (1930).
30.
30.Hieu Pham Trung Nguyen, Mehrdad Djavid, Kai Cui, and Zetian Mi, Nanotechnology 23, 194012 (2012).
http://dx.doi.org/10.1088/0957-4484/23/19/194012
31.
31.Jeppe V. Holm, Henrik I. Jørgensen, Peter Krogstrup, Jesper Nygård, Huiyun Liu, and Martin Aagesen, Nature Communications 4, Article number: 1498 (2013).
http://dx.doi.org/10.1038/ncomms2510
32.
32.J. Giber, I.V. Perczel, J. Gerblinger, U. Lampe, and M. Fleischer, Sensors and Actuators B 18-19, 113-118 (1994).
http://dx.doi.org/10.1016/0925-4005(94)87068-3
33.
33.S Lettieri, A Setaro, C Baratto, E Comini, G Faglia, G Sberveglieri, and P Maddalena, New Journal of Physics 10, 043013 (2008).
http://dx.doi.org/10.1088/1367-2630/10/4/043013
34.
34.S. Lettieri, A. Bismuto, P. Maddalena, C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, and L. Zanotti, Journal of Non-Crystalline Solids 352, 14571460 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.037
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944908
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944908
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944908
2016-03-23
2016-09-29

Abstract

In this work three different growth methods have been used to grow β-GaOnanostructures. The nanostructures were characterized by Grazing Incident X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Photoluminescence Spectroscopy. Photoluminescencespectra for all the samples of β-GaOnanostructures exhibit an UV and blue emission band. The relative intensity of UV and blue luminescence is strongly affected by the surface defects present on the nanostructures. Our study shows that Photoluminescence intensity of UV and blue luminescence can be reliably used to determine the quality of β-GaOnanostructures. Further the work opens up the possibility of using UV excitation and subsequent Photoluminescence analysis as a possible means for oxygen sensing. The Photoluminescence mechanism in β-GaOnanostructures is also discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944908.html;jsessionid=Sn-aW0cJ6vzsj9jxN1GUwsYV.x-aip-live-06?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944908&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944908&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944908'
Right1,Right2,Right3,