Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Phys. Status Solidi (RRL) 9, 28 (2015).
2.C. Wadia, A. P. Alivisatos, and D. M. Kammen, Environ. Sci. Technol. 43, 2072 (2009).
3.B. A. Andersson, Prog. Photovoltaics: Res. Appl. 8, 61 (2000).<61::AID-PIP301>3.0.CO;2-6
4.T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, and H. Ogawa, J. Phys. Chem. Sol. 66, 1978 (2005).
5.H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro, Appl. Phys. Express 1, 041201 (2008).
6.N. Nakayama and K. Ito, Appl. Surf. Sci. 92, 171 (1996).
7.A. Weber, S. Schmidt, D. Abou-Ras, P. Schubert-Bischoff, I. Denks, R. Mainz, and H. W. Schock, Appl. Phys. Lett. 95, 041904 (2009).
8.S. C. Riha, B. A. Parkinson, and A. L. Prieto, J. Am. Chem. Soc. 131, 12054 (2009).
9.S. Siebentritt and S. Schorr, Prog. Photovoltaics: Res. Appl. 20, 512 (2012).
10.S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Applied Physics Letters 94, 041903 (2009).
11.J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, Sol. Energy Mater. Sol. Cells 75, 155 (2003).
12.W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).
13.D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011).
14.W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
15.S. Siebentritt, in Wide-Gap Charcopyrites, edited by S. Siebentritt and U. Rau (Springer, Heidelberg, 2006), Chap. 7.
16.W. K. Metzger, I. L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi, and D. Levi, Thin Solid Films 517, 2360 (2009).
17.S. Shimakawa, K. Kitani, S. Hayashi, T. Satoh, Y. Hashimoto, Y. Takahashi, and T. Negami, Phys. Status Solidi A 203, 2630 (2006).
18.S. Shirakata and T. Nakada, Thin Solid Films 515, 6151 (2007).
19.X. Lin, A. Ennaoui, S. Levcenko, T. Dittrich, J. Kavalakkath, S. Kretzschmar, T. Unold, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 106, 013903 (2015).
20.M. Grossberg, J. Krustok, K. Timmo, and M. Altosaar, Thin Solid Films 517, 2489 (2009).
21.K. Tanaka, Y. Miyamoto, H. Uchiki, K. Nakazawa, and H. Araki, Phys. Status Solidi A 203, 2891 (2006).
22.T. Kirchartz and U. Rau, J. Appl. Phys. 102, 104510 (2007).
23.T. Kirchartz, U. Rau, M. Kurth, J. Matheis, and J. H. Werner, Thin Solid Films 515, 6238 (2007).
24.P. M. Bridenbaugh and P. Migliorato, Appl. Phys. Lett. 26, 459 (1975).
25.P. Migliorato and J. l. Shay, J. Appl. Phys. 46, 1777 (1975).
26.S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, and S. Niki, Sol. Energy Mater. Sol. Cells 87, 541 (2005).
27.R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, and D. V. Mitzi, Appl. Phys. Lett. 98, 253502 (2011).
28.T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001).
29.S. M. Sze, Semiconductor devices: Physics and Technology, 2nd ed., p. 537.
30.J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).
31.W. K. Metzger, I. L. Repins, and M. A. Contreras, Appl. Phys. Lett. 93, 022110 (2008).
32.D. Kuciauskas, J. V. Li, A. Kanevce, H. Guthrey, M. Contreras, J. Pankow, P. Dippo, and K. Ramanathan, J. Appl. Phys. 117, 185102 (2015).
33.M. Maiberg, C. Spindler, E. Jarzembowski, and R. Scheer, Thin Solid Films 582, 379 (2015).
34.V. Nadenau, U. Rao, A. Jasenek, and H. W. Schock, J. Appl. Phys. 87, 584 (2000).
35.S. S. Hegedus and W. N. Shafarman, Prog. Photovoltaics: Res. Appl. 12, 155 (2004).
36.O. Gunawan, T. K. Todorov, and D. V. Mitzi, Appl. Phys. Lett. 97, 233506 (2010).
37.K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, Appl. Phys. Lett. 97, 143508 (2010).

Data & Media loading...


Article metrics loading...



A comparative study with focusing on carrier recombination properties in CuZnSn(S,Se) (CZTSSe) and the CuInGaSe (CIGS) solar cells has been carried out. For this purpose, electroluminescence(EL) and also bias-dependent time resolved photoluminescence(TRPL) using femtosecond (fs) laser source were performed. For the similar forward current density, the EL-intensity of the CZTSSe sample was obtained significantly lower than that of the CIGS sample. Primarily, it can be attributed to the existence of excess amount of non-radiative recombination center in the CZTSSe, and/or CZTSSe/CdS interface comparing to that of CIGS sample. In case of CIGS sample, TRPL decay time was found to increase with the application of forward-bias. This can be attributed to the reduced charge separation rate resulting from the reduced electric-field at the junction. However, in CZTSSe sample, TRPL decay time has been found almost independent under the forward and reverse-bias conditions. This phenomenon indicates that the charge recombination rate strongly dominates over the charge separation rate across the junction of the CZTSSe sample. Finally, temperature dependent suggests that interface related recombination in the CZTSSe solar cellstructure might be one of the major factors that affect EL-intensity and also, TRPL decay curves.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd