Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944911
1.
1.P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Phys. Status Solidi (RRL) 9, 28 (2015).
http://dx.doi.org/10.1002/pssr.201409520
2.
2.C. Wadia, A. P. Alivisatos, and D. M. Kammen, Environ. Sci. Technol. 43, 2072 (2009).
http://dx.doi.org/10.1021/es8019534
3.
3.B. A. Andersson, Prog. Photovoltaics: Res. Appl. 8, 61 (2000).
http://dx.doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<61::AID-PIP301>3.0.CO;2-6
4.
4.T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, and H. Ogawa, J. Phys. Chem. Sol. 66, 1978 (2005).
http://dx.doi.org/10.1016/j.jpcs.2005.09.037
5.
5.H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro, Appl. Phys. Express 1, 041201 (2008).
http://dx.doi.org/10.1143/APEX.1.041201
6.
6.N. Nakayama and K. Ito, Appl. Surf. Sci. 92, 171 (1996).
http://dx.doi.org/10.1016/0169-4332(95)00225-1
7.
7.A. Weber, S. Schmidt, D. Abou-Ras, P. Schubert-Bischoff, I. Denks, R. Mainz, and H. W. Schock, Appl. Phys. Lett. 95, 041904 (2009).
http://dx.doi.org/10.1063/1.3192357
8.
8.S. C. Riha, B. A. Parkinson, and A. L. Prieto, J. Am. Chem. Soc. 131, 12054 (2009).
http://dx.doi.org/10.1021/ja9044168
9.
9.S. Siebentritt and S. Schorr, Prog. Photovoltaics: Res. Appl. 20, 512 (2012).
http://dx.doi.org/10.1002/pip.2156
10.
10.S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Applied Physics Letters 94, 041903 (2009).
http://dx.doi.org/10.1063/1.3074499
11.
11.J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, Sol. Energy Mater. Sol. Cells 75, 155 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00127-7
12.
12.W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).
13.
13.D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.11.028
14.
14.W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
15.
15.S. Siebentritt, in Wide-Gap Charcopyrites, edited by S. Siebentritt and U. Rau (Springer, Heidelberg, 2006), Chap. 7.
16.
16.W. K. Metzger, I. L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi, and D. Levi, Thin Solid Films 517, 2360 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.050
17.
17.S. Shimakawa, K. Kitani, S. Hayashi, T. Satoh, Y. Hashimoto, Y. Takahashi, and T. Negami, Phys. Status Solidi A 203, 2630 (2006).
http://dx.doi.org/10.1002/pssa.200669583
18.
18.S. Shirakata and T. Nakada, Thin Solid Films 515, 6151 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.040
19.
19.X. Lin, A. Ennaoui, S. Levcenko, T. Dittrich, J. Kavalakkath, S. Kretzschmar, T. Unold, and M. Ch. Lux-Steiner, Appl. Phys. Lett. 106, 013903 (2015).
http://dx.doi.org/10.1063/1.4905311
20.
20.M. Grossberg, J. Krustok, K. Timmo, and M. Altosaar, Thin Solid Films 517, 2489 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.024
21.
21.K. Tanaka, Y. Miyamoto, H. Uchiki, K. Nakazawa, and H. Araki, Phys. Status Solidi A 203, 2891 (2006).
http://dx.doi.org/10.1002/pssa.200669545
22.
22.T. Kirchartz and U. Rau, J. Appl. Phys. 102, 104510 (2007).
http://dx.doi.org/10.1063/1.2817959
23.
23.T. Kirchartz, U. Rau, M. Kurth, J. Matheis, and J. H. Werner, Thin Solid Films 515, 6238 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.105
24.
24.P. M. Bridenbaugh and P. Migliorato, Appl. Phys. Lett. 26, 459 (1975).
http://dx.doi.org/10.1063/1.88209
25.
25.P. Migliorato and J. l. Shay, J. Appl. Phys. 46, 1777 (1975).
http://dx.doi.org/10.1063/1.321782
26.
26.S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, and S. Niki, Sol. Energy Mater. Sol. Cells 87, 541 (2005).
http://dx.doi.org/10.1016/j.solmat.2004.08.017
27.
27.R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, and D. V. Mitzi, Appl. Phys. Lett. 98, 253502 (2011).
http://dx.doi.org/10.1063/1.3600776
28.
28.T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00266-X
29.
29.S. M. Sze, Semiconductor devices: Physics and Technology, 2nd ed., p. 537.
30.
30.J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).
31.
31.W. K. Metzger, I. L. Repins, and M. A. Contreras, Appl. Phys. Lett. 93, 022110 (2008).
http://dx.doi.org/10.1063/1.2957983
32.
32.D. Kuciauskas, J. V. Li, A. Kanevce, H. Guthrey, M. Contreras, J. Pankow, P. Dippo, and K. Ramanathan, J. Appl. Phys. 117, 185102 (2015).
http://dx.doi.org/10.1063/1.4921011
33.
33.M. Maiberg, C. Spindler, E. Jarzembowski, and R. Scheer, Thin Solid Films 582, 379 (2015).
http://dx.doi.org/10.1016/j.tsf.2014.09.022
34.
34.V. Nadenau, U. Rao, A. Jasenek, and H. W. Schock, J. Appl. Phys. 87, 584 (2000).
http://dx.doi.org/10.1063/1.371903
35.
35.S. S. Hegedus and W. N. Shafarman, Prog. Photovoltaics: Res. Appl. 12, 155 (2004).
http://dx.doi.org/10.1002/pip.518
36.
36.O. Gunawan, T. K. Todorov, and D. V. Mitzi, Appl. Phys. Lett. 97, 233506 (2010).
http://dx.doi.org/10.1063/1.3522884
37.
37.K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, Appl. Phys. Lett. 97, 143508 (2010).
http://dx.doi.org/10.1063/1.3499284
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944911
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944911
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944911
2016-03-23
2016-09-25

Abstract

A comparative study with focusing on carrier recombination properties in CuZnSn(S,Se) (CZTSSe) and the CuInGaSe (CIGS) solar cells has been carried out. For this purpose, electroluminescence(EL) and also bias-dependent time resolved photoluminescence(TRPL) using femtosecond (fs) laser source were performed. For the similar forward current density, the EL-intensity of the CZTSSe sample was obtained significantly lower than that of the CIGS sample. Primarily, it can be attributed to the existence of excess amount of non-radiative recombination center in the CZTSSe, and/or CZTSSe/CdS interface comparing to that of CIGS sample. In case of CIGS sample, TRPL decay time was found to increase with the application of forward-bias. This can be attributed to the reduced charge separation rate resulting from the reduced electric-field at the junction. However, in CZTSSe sample, TRPL decay time has been found almost independent under the forward and reverse-bias conditions. This phenomenon indicates that the charge recombination rate strongly dominates over the charge separation rate across the junction of the CZTSSe sample. Finally, temperature dependent suggests that interface related recombination in the CZTSSe solar cellstructure might be one of the major factors that affect EL-intensity and also, TRPL decay curves.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944911.html;jsessionid=7CdL6naOIwmSH9jkTMBhZJgc.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944911&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944911&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944911'
Right1,Right2,Right3,