Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944950
1.
1.C. Ronchi and J. P. Hiernaut, J. Nucl. Mater. 325, 112 (2004).
http://dx.doi.org/10.1016/j.jnucmat.2003.10.006
2.
2.C. S. Becquart and C. Domain, Phys. Rev. Lett. 97, 196402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.196402
3.
3.Y. Lu, F. W. Zheng, and P. Zhang, J. Appl. Phys. 114, 153507 (2013).
http://dx.doi.org/10.1063/1.4825223
4.
4.H. Trinkaus and B. N. Singh, J. Nucl. Mater. 323, 229 (2003).
http://dx.doi.org/10.1016/j.jnucmat.2003.09.001
5.
5.R. Rajaraman, B. Viswanathan, M. C. Valsakumar, and K. P. Gopinathan, Phys. Rev. B 50, 597600 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.597
6.
6.V. Sciani and P Jung, Radia. Eff. 78, 8799 (1983).
http://dx.doi.org/10.1080/00337578308207362
7.
7.C. S. Barrett and T. B. Massalski, Structure of Metals, 3rd ed. (Pergamon, Oxford, 1980).
8.
8.M. C. Billone, M. D. Donne, and R. G. Macaulay-Newcombe, Fusion Eng. Des. 27, 179190 (1995).
http://dx.doi.org/10.1016/0920-3796(95)90125-6
9.
9.R. E. Schmunk, R. M. Brugger, P. D. Randolph, and K. A. Strong, Phys. Rev. B 128, 2 (1962).
http://dx.doi.org/10.1103/PhysRev.128.562
10.
10.M. G. Ganchenkova, V. A. Borodin, and R. M. Nieminen, Phys. Rev. B 79, 134101 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.134101
11.
11.M. G. Ganchenkova and V. A. Borodin, Phys. Rev. B 75, 054108 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.054108
12.
12.V. P. Chakin, V. A. Kazakov, R. R. Melder, Yu. D. Goncharenko, and I. B. Kupriyanov, J. Nucl. Mater. 647, 307311 (2002).
13.
13.P. Jung, J. Nucl. Mater. 202, 210215 (1993).
http://dx.doi.org/10.1016/0022-3115(93)90389-G
14.
14.L. Sannen, C. D. Raedt, F. Moons, and Y. Yao, Fusion Eng. Des. 29, 470474 (1994).
http://dx.doi.org/10.1016/0920-3796(95)80055-3
15.
15.R. Vassen, H. Trinkaus, and P. Jung, J. Nucl. Mater. 183, 1 (1991).
http://dx.doi.org/10.1016/0022-3115(91)90464-I
16.
16.M. Mantina, Y. Wang, L. Q. Chen, Z. K. Liu, and C. Wolverton, Acta. Mater. 57, 41024108 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.05.006
17.
17.A. S. Bakai, A. N. Timoshevskii, and B. Z. Yanchitsky, Low Temp. Phys. 37, 791 (2011).
http://dx.doi.org/10.1063/1.3665873
18.
18.P. V. Vladimirov and A. Moeslang, J. Nucl. Mater 442, S694S698 (2013).
http://dx.doi.org/10.1016/j.jnucmat.2013.04.041
19.
19.P. B. Zhang, J. J. Zhao, and B. Wen, J. Phys.: Condens. Matter 24, 095004 (2012).
http://dx.doi.org/10.1088/0953-8984/24/9/095004
20.
20.C. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).
http://dx.doi.org/10.1103/PhysRev.76.1169
21.
21.J. Hafner, J. Comput. Chem. 29, 2044 (2008).
http://dx.doi.org/10.1002/jcc.21057
22.
22.N. A. W. Holzwarth and Y. Zeng, Phys. Rev. B 51, 13653 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.13653
23.
23.P. Blaha and K. Schwarz, J. Phys. F: Met. Phys. 27, 899 (1987).
http://dx.doi.org/10.1088/0305-4608/17/4/018
24.
24.C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1976).
25.
25.G. Henkelman, B. P. Uberaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
26.
26.A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134106
27.
27.M. G. Ganchenkova, P. V. Vladimirov, and V. A. Borodin, J. Nucl. Mater. 386-388, 7981 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2008.12.063
28.
28.X. Y. Yang, Y. Lu, and P. Zhang, J. Appl. Phys. 117, 164903 (2015).
http://dx.doi.org/10.1063/1.4919602
29.
29.J. M. Beeston, ASTM-STP 426, 135 (1967).
30.
30.V. V. Vlasov and Y. G. Degalitsev, Voprosi Atomnoi Nauk i Tech., Ser.: Fiz. Rad. Pov. i Rad. Mater. 3, 46 (1991).
31.
31.A. G. Bespalov, V. N. Bykov, L. V. Pavlinov, and Y. V. Shumov, Tr. Fiz. Energ. Inst. (Moscow) 1974, p. 443: cited in Physics Data (FIZ, Karlsruhe, 1976) vol. 5-1.
32.
32.L. V. Pavlinov, G. V. Grigoryev, and Y. G. Sevastyanov, Fiz. Met. Metalloved. 25, 565 (1968).
33.
33.N. Roux, J. J. Abassion, M. Briec, D. Cruz, T. Flament, and I. Schuster, J. Nucl. Mater. 191-194, 168172 (1992).
http://dx.doi.org/10.1016/S0022-3115(09)80026-3
34.
34.X. Y. Yang, Y. Lu, and P. Zhang, J. Appl. Phys. 117, 164903 (2015).
http://dx.doi.org/10.1063/1.4919602
35.
35.S. Agarwal, P. Trocellier, Y. Serruys, S. Vaubaillon, and S. Miro, Nucl. Instrum. Methods Phys. Res., Sect. B 327, 117 (2014).
http://dx.doi.org/10.1016/j.nimb.2013.09.039
36.
36.V. Borodin and P. Vladimirov, J. Nucl. Mater. 386-388, 106108 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2008.12.070
37.
37.I. B. Kuprianov, V. A. Gorokhov, and V. V. Vlasov, Fus, Eng. 2, 948951 (1995).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944950
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944950
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944950
2016-03-24
2016-12-02

Abstract

The behavior of interstitial helium in -Be has been studied with first-principles method. It is found that the most favored position for helium is the basal octahedral (BO) site, closely followed by the basal tetrahedral (BT) site, in agreement with previous predictions. The interaction energy between the helium and the neighborhood Be atoms and the deformation energy of -Be matrix are calculated. The feasible minimum-energy pathways (MEP) of interstitial helium atoms in -Be matrix and the corresponding atomic structures of the saddle points associated with the each MEP are investigated. The temperature-dependent diffusion coefficients have also been predicted. It is confirmed that the interstitial helium diffuses two-dimensionally at low temperatures; however, it can diffuse three-dimensionally at higher temperatures. Besides, the microscopic parameters in the pre-factor and activation energy of the diffusion coefficients are obtained. Both diffusion coefficients are higher than the available experiment data, which may attribute to the fact that under real condition the diffusion is not free, i.e. the actual -Be matric has various defects and impurities which heavily affect the diffusion of helium. Therefore, our theoretical prediction is the upper bound for helium diffusion in -Be matrix.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944950.html;jsessionid=h9Dqh4viYzzndtJiM3hnRBHm.x-aip-live-06?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944950&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944950&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944950'
Right1,Right2,Right3,