Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4944954
1.
1.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2.T. Dietl, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
3.
3.T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Appl. Phys. Lett. 78(7), 958 (2001).
http://dx.doi.org/10.1063/1.1348323
4.
4.N. Jedrecy, H. J. von Bardeleben, and D. Demaille, Phys. Rev. B 80, 205204 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205204
5.
5.D. Y. Li, Y. J. Zeng, L. M. C. Pereira, D. Batuk, J. Hadermann, Y. Z. Zhang, Z. Z. Ye, K. Temst, A. Vantomme, M. J. Van Bael, and C. Van Haesendonck, J. App. Phys. 114(3), 033909 (2013).
http://dx.doi.org/10.1063/1.4815877
6.
6.M. Hamieh, N. Jedrecy, C. Hebert, D. Demaille, and J. Perriere, Phys. Rev. B 92, 155302 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.155302
7.
7.J. Alaria, P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj, N. Brihi, G. Schmerber, S. Colis, and A. Dinia, Chem. Phys. Lett. 415(4-6), 337 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.09.003
8.
8.C. N. R. Rao and F. L. Deepak, J. Mater. Chem. 15(5), 573 (2005).
http://dx.doi.org/10.1039/b412993h
9.
9.S. W. Jung, S.-J. An, G.-C. Yi, C. U. Jung, and S.-I. Lee, Appl. Phys. Lett. 80(24), 4561 (2002).
http://dx.doi.org/10.1063/1.1487927
10.
10.P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Guillen, B. Johansson, and G. A. Gehring, Nature Mater. 2(10), 673 (2003).
http://dx.doi.org/10.1038/nmat984
11.
11.D. A. Schwartz and D. R. Gamelin, Adv. Mater. 16(23-24), 2115 (2004).
http://dx.doi.org/10.1002/adma.200400456
12.
12.F. Zhu, Y. Zhang, Y. Yan, W. Song, and L. Xia, Bull. Mater. Sci. 31(2), 121 (2008).
http://dx.doi.org/10.1007/s12034-008-0021-5
13.
13.F. Schoofs, T. Fix, A. Hakimi, S. S. Dhesi, G. van der Laan, S. A. Cavill, S. Langridge, J. L. MacManus-Driscoll, and M. G. Blamire, J. Appl. Phys. 108(5), 053911 (2010).
http://dx.doi.org/10.1063/1.3455856
14.
14.N. S. Norberg, K. R. Kittilstved, J. E. Amonette, R. K. Kukkadapu, D. A. Schwartz, and a. D. R. Gamelin, J. Am. Chem. Soc 126(30), 9387 (2004).
http://dx.doi.org/10.1021/ja048427j
15.
15.M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and and H. Ohno, nat. phys. 6, 22 (2010).
http://dx.doi.org/10.1038/nphys1455
16.
16.H. Chou, C. Lin, J. Huang, and H. Hsu, Phys. Rev. B 77(24), 245210 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245210
17.
17.E. Senthil kumar, S. Venkatesh, and M. S. Ramachandra Rao, Appl. Phys. Lett. 96(23), 232504 (2010).
http://dx.doi.org/10.1063/1.3449122
18.
18.A. Ney, T. Kammermeier, V. Ney, K. Ollefs, and S. Ye, J. Magn. Magn. Mater. 320(23), 3341 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.07.008
19.
19.W. M. H. Oo, L. V. Saraf, M. H. Engelhard, V. Shutthanandan, L. Bergman, J. Huso, and M. D. McCluskey, J. Appl. Phys. 105(1), 013715 (2009).
http://dx.doi.org/10.1063/1.3063730
20.
20.K. Thakur, S. Gautam, K. H. Chae, M. Subramanian, R. Jayavel, and K. Asokan, J. Kor. Phys. Soc. 55(1), 177 (2009).
http://dx.doi.org/10.3938/jkps.55.177
21.
21.P. Thakur, K. H. Chae, J. Y. Kim, M. Subramanian, R. Jayavel, and K. Asokan, Appl. Phys. Lett. 91(16), 162503 (2007).
http://dx.doi.org/10.1063/1.2794764
22.
22.L. Zhang, J.-Q. Wang, J. Li, S. Zhang, Z. Jiang, J. Zhou, J. Cheng, T. Hu, W. Yan, X. Wei, and Z. Wu, Chem. Mater. 24(9), 16761681 (2012).
http://dx.doi.org/10.1021/cm203661c
23.
23.K. R. Kittilstved, D. A. Schwartz, A. C. Tuan, S. M. Heald, S. A. Chambers, and D. R. Gamelin, Phys. Rev. Lett. 97(3), 037203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.037203
24.
24.J. H. Guo, A. Gupta, P. Sharma, K. V. Rao, M. A. Marcus, C. L. Dong, J. M. Guillen, S. M. Butorin, M. Mattesini, P. A. Glans, K. E. Smith, C. L. Chang, and R. Ahuja, J.Phys.: Condens. Matter 19(17), 172202 (2007).
http://dx.doi.org/10.1088/0953-8984/19/17/172202
25.
25.J. Jin, G. S. Chang, Y. X. Zhou, X. Y. Zhang, D. W. Boukhvalov, E. Z. Kurmaev, and A. Moewes, Appl. Surf. Sci. 257, 10748 (2011).
26.
26.C. Dong, C. Persson, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja, C. Chang, and J. H. Guo, Phys. Rev. B 70(19), 195325 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195325
27.
27.J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 84(18), 3462 (2004).
http://dx.doi.org/10.1063/1.1737075
28.
28.B. Straumal, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal, G. Schütz, P. van Aken, E. Goering, and B. Baretzky, Phys. Rev. B 79, 205206 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205206
29.
29.B. B. Straumal, S. G. Protasova, A. A. Mazilkin, A. A. Myatiev, P. B. Straumal, G. Schütz, E. Goering, and B. Baretzky, J. Appl. Phys. 108(7), 073923 (2010).
http://dx.doi.org/10.1063/1.3486044
30.
30.A. L. Shluger, K. P. McKenna, P. V. Sushko, D. M. Ramo, and A. V. Kimmel, Modell. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
http://dx.doi.org/10.1088/0965-0393/17/8/084004
31.
31.P. Liu and J. Tang, Journal of physics. Condensed matter : an Institute of Physics journal 25, 125802 (2013).
http://dx.doi.org/10.1088/0953-8984/25/12/125802
32.
32.A. Chakrabarty and C. H. Patterson, Phys. Rev. B 84, 054441 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.054441
33.
33.M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 87(10), 107203 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.107203
34.
34.A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.247202
35.
35.A. Kaminski and S. Das Sarma, Phys. Rev. B 68, 235210 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.235210
36.
36.S. von Molnar and T. Kasuya, Proc. tenth Intl. Conf. Phys. Semicon. 233 (1970).
37.
37.B. Thole, G. van der Laan, J. Fuggle, G. Sawatzky, R. Karnatak, and J. M. Esteva, Physical Review B 32(8), 51075118 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.5107
38.
38.H. Chou, C. P. Lin, H. S. Hsu, and S. J. Sun, Appl. Phys. Lett. 96(9), 092503 (2010).
http://dx.doi.org/10.1063/1.3309588
39.
39.P. Majumdar and P. Littlewood, Phys. Rev. Lett. 81(6), 1314 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1314
40.
40.K. Sato, T. Fukushima, and H. Katayama-Yoshida, Jpn. J. App. Phys. 46(No. 28), L682L684 (2007).
http://dx.doi.org/10.1143/JJAP.46.L682
41.
41.R. Morgunov, A. Dmitriev, and O. Kazakova, Phys. Rev. B 80, 085205 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.085205
42.
42.L. Ottaviano, A. Continenza, G. Profeta, G. Impellizzeri, A. Irrera, R. Gunnella, and O. Kazakova, Phys. Rev. B 83, 134426 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.134426
43.
43.H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F. Lévy, J. Appl. Phys. 75(4), 2042 (1994).
http://dx.doi.org/10.1063/1.356306
44.
44.J. H. Yao, H. H. Lin, and T. S. Chin, Appl. Phys. Lett. 92(24), 242501 (2008).
http://dx.doi.org/10.1063/1.2946662
45.
45.B. L. Altshuler and A. G. Aronov, Electron-Electron Interactions in Disordered Systems (North Holland, Amsterdam, 1985).
46.
46.N. F. Mott, Philos. Mag. A 19, 835 (1969).
http://dx.doi.org/10.1080/14786436908216338
47.
47.R. Khosla and J. Fischer, Phys. Rev. B 2(10), 4084 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.4084
48.
48.T. Dietl, J. Phys. Soc. Jpn. 77(3), 031005 (2008).
http://dx.doi.org/10.1143/JPSJ.77.031005
49.
49.Q. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, and M. Grundmann, Phys. Rev. B 73, 205342 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205342
50.
50.J. Jaroszyński, T. Andrearczyk, G. Karczewski, J. Wróbel, T. Wojtowicz, D. Popović, and T. Dietl, Phys. Rev. B 76(4), 045322 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045322
51.
51.T. Andrearczyk, J. Jaroszyński, G. Grabecki, T. Dietl, T. Fukumura, and M. Kawasaki, Phys. Rev. B 72, 121309 (R) (2005).
http://dx.doi.org/10.1103/PhysRevB.72.121309
52.
52.T. Dietl, T. Andrearczyk, A. Lipińska, M. Kiecana, M. Tay, and Y. Wu, Phys. Rev. B 76, 155312 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155312
53.
53.J. R. Neal, A. J. Behan, R. M. Ibrahim, H. J. Blythe, M. Ziese, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett. 96(19), 197208 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.197208
54.
54.X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. Neal, A. Mokhtari, R. M. Ibrahim, A. M. Fox, and G. A. Gehring, New J. Phys. 8, 135 (2006).
http://dx.doi.org/10.1088/1367-2630/8/8/135
55.
55.P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57(2), 287 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.287
56.
56.J. M. D. Coey, M. Venkatesan, and C. B. Fitzerald, Nature Mater. 4(2), 173 (2005).
http://dx.doi.org/10.1038/nmat1310
57.
57.B. Pal and P. K. Giri, J. Appl. Phys. 108(8), 084322 (2010).
http://dx.doi.org/10.1063/1.3500380
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4944954
Loading
/content/aip/journal/adva/6/3/10.1063/1.4944954
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4944954
2016-03-24
2016-12-04

Abstract

We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the - exchange-induced spin splitting that was indicated by large positive magnetoresistance (∼40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4944954.html;jsessionid=q4cSvko3qGlmieB7MC6jNklo.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4944954&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4944954&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4944954'
Right1,Right2,Right3,