Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
2.T. Dietl, Science 287, 1019 (2000).
3.T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Appl. Phys. Lett. 78(7), 958 (2001).
4.N. Jedrecy, H. J. von Bardeleben, and D. Demaille, Phys. Rev. B 80, 205204 (2009).
5.D. Y. Li, Y. J. Zeng, L. M. C. Pereira, D. Batuk, J. Hadermann, Y. Z. Zhang, Z. Z. Ye, K. Temst, A. Vantomme, M. J. Van Bael, and C. Van Haesendonck, J. App. Phys. 114(3), 033909 (2013).
6.M. Hamieh, N. Jedrecy, C. Hebert, D. Demaille, and J. Perriere, Phys. Rev. B 92, 155302 (2015).
7.J. Alaria, P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj, N. Brihi, G. Schmerber, S. Colis, and A. Dinia, Chem. Phys. Lett. 415(4-6), 337 (2005).
8.C. N. R. Rao and F. L. Deepak, J. Mater. Chem. 15(5), 573 (2005).
9.S. W. Jung, S.-J. An, G.-C. Yi, C. U. Jung, and S.-I. Lee, Appl. Phys. Lett. 80(24), 4561 (2002).
10.P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Guillen, B. Johansson, and G. A. Gehring, Nature Mater. 2(10), 673 (2003).
11.D. A. Schwartz and D. R. Gamelin, Adv. Mater. 16(23-24), 2115 (2004).
12.F. Zhu, Y. Zhang, Y. Yan, W. Song, and L. Xia, Bull. Mater. Sci. 31(2), 121 (2008).
13.F. Schoofs, T. Fix, A. Hakimi, S. S. Dhesi, G. van der Laan, S. A. Cavill, S. Langridge, J. L. MacManus-Driscoll, and M. G. Blamire, J. Appl. Phys. 108(5), 053911 (2010).
14.N. S. Norberg, K. R. Kittilstved, J. E. Amonette, R. K. Kukkadapu, D. A. Schwartz, and a. D. R. Gamelin, J. Am. Chem. Soc 126(30), 9387 (2004).
15.M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and and H. Ohno, nat. phys. 6, 22 (2010).
16.H. Chou, C. Lin, J. Huang, and H. Hsu, Phys. Rev. B 77(24), 245210 (2008).
17.E. Senthil kumar, S. Venkatesh, and M. S. Ramachandra Rao, Appl. Phys. Lett. 96(23), 232504 (2010).
18.A. Ney, T. Kammermeier, V. Ney, K. Ollefs, and S. Ye, J. Magn. Magn. Mater. 320(23), 3341 (2008).
19.W. M. H. Oo, L. V. Saraf, M. H. Engelhard, V. Shutthanandan, L. Bergman, J. Huso, and M. D. McCluskey, J. Appl. Phys. 105(1), 013715 (2009).
20.K. Thakur, S. Gautam, K. H. Chae, M. Subramanian, R. Jayavel, and K. Asokan, J. Kor. Phys. Soc. 55(1), 177 (2009).
21.P. Thakur, K. H. Chae, J. Y. Kim, M. Subramanian, R. Jayavel, and K. Asokan, Appl. Phys. Lett. 91(16), 162503 (2007).
22.L. Zhang, J.-Q. Wang, J. Li, S. Zhang, Z. Jiang, J. Zhou, J. Cheng, T. Hu, W. Yan, X. Wei, and Z. Wu, Chem. Mater. 24(9), 16761681 (2012).
23.K. R. Kittilstved, D. A. Schwartz, A. C. Tuan, S. M. Heald, S. A. Chambers, and D. R. Gamelin, Phys. Rev. Lett. 97(3), 037203 (2006).
24.J. H. Guo, A. Gupta, P. Sharma, K. V. Rao, M. A. Marcus, C. L. Dong, J. M. Guillen, S. M. Butorin, M. Mattesini, P. A. Glans, K. E. Smith, C. L. Chang, and R. Ahuja, J.Phys.: Condens. Matter 19(17), 172202 (2007).
25.J. Jin, G. S. Chang, Y. X. Zhou, X. Y. Zhang, D. W. Boukhvalov, E. Z. Kurmaev, and A. Moewes, Appl. Surf. Sci. 257, 10748 (2011).
26.C. Dong, C. Persson, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja, C. Chang, and J. H. Guo, Phys. Rev. B 70(19), 195325 (2004).
27.J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 84(18), 3462 (2004).
28.B. Straumal, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal, G. Schütz, P. van Aken, E. Goering, and B. Baretzky, Phys. Rev. B 79, 205206 (2009).
29.B. B. Straumal, S. G. Protasova, A. A. Mazilkin, A. A. Myatiev, P. B. Straumal, G. Schütz, E. Goering, and B. Baretzky, J. Appl. Phys. 108(7), 073923 (2010).
30.A. L. Shluger, K. P. McKenna, P. V. Sushko, D. M. Ramo, and A. V. Kimmel, Modell. Simul. Mater. Sci. Eng. 17(8), 084004 (2009).
31.P. Liu and J. Tang, Journal of physics. Condensed matter : an Institute of Physics journal 25, 125802 (2013).
32.A. Chakrabarty and C. H. Patterson, Phys. Rev. B 84, 054441 (2011).
33.M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 87(10), 107203 (2001).
34.A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002).
35.A. Kaminski and S. Das Sarma, Phys. Rev. B 68, 235210 (2003).
36.S. von Molnar and T. Kasuya, Proc. tenth Intl. Conf. Phys. Semicon. 233 (1970).
37.B. Thole, G. van der Laan, J. Fuggle, G. Sawatzky, R. Karnatak, and J. M. Esteva, Physical Review B 32(8), 51075118 (1985).
38.H. Chou, C. P. Lin, H. S. Hsu, and S. J. Sun, Appl. Phys. Lett. 96(9), 092503 (2010).
39.P. Majumdar and P. Littlewood, Phys. Rev. Lett. 81(6), 1314 (1998).
40.K. Sato, T. Fukushima, and H. Katayama-Yoshida, Jpn. J. App. Phys. 46(No. 28), L682L684 (2007).
41.R. Morgunov, A. Dmitriev, and O. Kazakova, Phys. Rev. B 80, 085205 (2009).
42.L. Ottaviano, A. Continenza, G. Profeta, G. Impellizzeri, A. Irrera, R. Gunnella, and O. Kazakova, Phys. Rev. B 83, 134426 (2011).
43.H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F. Lévy, J. Appl. Phys. 75(4), 2042 (1994).
44.J. H. Yao, H. H. Lin, and T. S. Chin, Appl. Phys. Lett. 92(24), 242501 (2008).
45.B. L. Altshuler and A. G. Aronov, Electron-Electron Interactions in Disordered Systems (North Holland, Amsterdam, 1985).
46.N. F. Mott, Philos. Mag. A 19, 835 (1969).
47.R. Khosla and J. Fischer, Phys. Rev. B 2(10), 4084 (1970).
48.T. Dietl, J. Phys. Soc. Jpn. 77(3), 031005 (2008).
49.Q. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, and M. Grundmann, Phys. Rev. B 73, 205342 (2006).
50.J. Jaroszyński, T. Andrearczyk, G. Karczewski, J. Wróbel, T. Wojtowicz, D. Popović, and T. Dietl, Phys. Rev. B 76(4), 045322 (2007).
51.T. Andrearczyk, J. Jaroszyński, G. Grabecki, T. Dietl, T. Fukumura, and M. Kawasaki, Phys. Rev. B 72, 121309 (R) (2005).
52.T. Dietl, T. Andrearczyk, A. Lipińska, M. Kiecana, M. Tay, and Y. Wu, Phys. Rev. B 76, 155312 (2007).
53.J. R. Neal, A. J. Behan, R. M. Ibrahim, H. J. Blythe, M. Ziese, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett. 96(19), 197208 (2006).
54.X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. Neal, A. Mokhtari, R. M. Ibrahim, A. M. Fox, and G. A. Gehring, New J. Phys. 8, 135 (2006).
55.P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57(2), 287 (1985).
56.J. M. D. Coey, M. Venkatesan, and C. B. Fitzerald, Nature Mater. 4(2), 173 (2005).
57.B. Pal and P. K. Giri, J. Appl. Phys. 108(8), 084322 (2010).

Data & Media loading...


Article metrics loading...



We studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the - exchange-induced spin splitting that was indicated by large positive magnetoresistance (∼40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetism in doped/un-doped ZnO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd