Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4945015
1.
1.S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Japanese J. Appl. Phys. 36, Part 2, L1059 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1059
2.
2.S. Nakamura, Solid State Communications 102, 237 (1997).
http://dx.doi.org/10.1016/S0038-1098(96)00722-3
3.
3.T. Kobayashi, F. Nakamura, K. Naganuma, T. Tojyo, H. Nakajima, T. Asatsuma, H. Kawai, and M. Ikeda, Electron. Lett. 34, 1494 (1998).
http://dx.doi.org/10.1049/el:19981063
4.
4.S. Uchida, M. Takeya, S. Ikeda, T. Mizuno, T. Fujimoto, O. Matsumoto, S. Goto, T. Tojyo, and M. Ikeda, IEEE J. Selected Topics in Quantum Electronics 9, 1252 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.820910
5.
5.M. Kuramoto, C. Sasaoka, N. Futagawa, M. Nido, and A. A. Yamaguchi, Phys. Status Solidi A 192, 329 (2002).
http://dx.doi.org/10.1002/1521-396X(200208)192:2<329::AID-PSSA329>3.0.CO;2-A
6.
6.A. A. Efremov, D. V. Tarkhin, N. I. Bochkareva, R. I. Gorbunov, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 40, 375 (2006).
http://dx.doi.org/10.1134/S1063782606030225
7.
7.T. Asano, M. Takeya, T. Tojyo, T. Mizuno, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, Appl. Phys. Lett. 80, 3497 (2002).
http://dx.doi.org/10.1063/1.1478157
8.
8.M. Takeya, T. Tojyo, T. Asano, S. Ikeda, T. Mizuno, O. Matsumoto, S. Goto, Y. Yabuki, S. Uchida, and M. Ikeda, Phys. Status Solidi A 192, 269 (2002).
http://dx.doi.org/10.1002/1521-396X(200208)192:2<269::AID-PSSA269>3.0.CO;2-Z
9.
9.M. X. Feng, J. P. Liu, S. M. Zhang, D. S. Jiang, Z. C. Li, D. Y. Li, L. Q. Zhang, F. Wang, H. Wang, and H. Yang, IEEE J. Selected Topics in Quantum Electronics 19, 1500705 (2013).
http://dx.doi.org/10.1109/JSTQE.2012.2237015
10.
10.P. Chen, M. X. Feng, D. S. Jiang, D. G. Zhao, Z. S. Liu, L. Li, L. L. Wu, L. C. Le, J. J. Zhu, H. Wang, S. M. Zhang, and H. Yang, J. Appl. Phys. 112, 113105 (2012).
http://dx.doi.org/10.1063/1.4768287
11.
11.T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, IEEE J. Quantum Electron 39, 135 (2003).
http://dx.doi.org/10.1109/JQE.2002.806213
12.
12.LASTIP Simulator, Software Package, Crosslight Software, Inc., Canada.
13.
13.F. Bernardini and V. Fiorentini, Phys. Rev. B 64, 085207 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085207
14.
14.S. N. Lee, J. K. Son, H. S. Paek, Y. J. Sung, K. S. Kim, H. K. Kim, H. Kim, T. Sakong, Y. Park, K. H. Ha, and O. H. Nam, Appl. Phys. Lett. 93, 091109 (2008).
http://dx.doi.org/10.1063/1.2965113
15.
15.S. N. Lee, H. S. Paek, J. K. Son, H. Kim, K. K. Kim, K. H. Ha, O. H. Nam, and Y. Park, J. Electroceramics 23, 406 (2009).
http://dx.doi.org/10.1007/s10832-008-9478-2
16.
16.C. G. Van de Walle, C. Stampfl, and J. Neugebauer, J. Crystal Growth 189/190, 505 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00340-6
17.
17.C. Stampfl and C. G. Van de Walle, Appl. Phys. Lett. 72, 459 (1998).
http://dx.doi.org/10.1063/1.120803
18.
18.J. Cao, D. Pavlidis, Y. Park, J. Singh, and A. Eisenbach, J. Appl. Phys. 83, 3829 (1998).
http://dx.doi.org/10.1063/1.366613
19.
19.P. Prystawko, M. Leszczynski, B. Beaumont, P. Gibart, E. Frayssinet, W. Knap, P. Wisniewski, M. Bockowski, T. Suski, and S. Porowski, Physica Status Solidi B 210, 437 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3951(199812)210:2<437::AID-PSSB437>3.0.CO;2-L
20.
20.K. Saarinen, P. Seppala, J. Oila, P. Hautojarvi, C. Corbel, O. Briot, and R. L. Aulombard, Appl. Phys. Lett. 73, 3253 (1998).
http://dx.doi.org/10.1063/1.122735
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4945015
Loading
/content/aip/journal/adva/6/3/10.1063/1.4945015
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4945015
2016-03-25
2016-09-26

Abstract

In order to reduce the internal optical loss of InGaNlaser diodes, an unintentionally dopedGaN (u-GaN) interlayer is inserted between InGaN/GaN multiple quantum well active region and AlGaN electron blocking layer. The thickness design of u-GaN interlayer matching up with background doping level for improving laser performance is studied. It is found that a suitably chosen u-GaN interlayer can well modulate the optical absorption loss and optical confinement factor. However, if the value of background doping concentration of u-GaN interlayer is too large, the output light power may decrease. The analysis of energy band diagram of a LD structure with 100 nm u-GaN interlayer shows that the width of n-side depletion region decreases when the background concentration increases, and may become even too small to cover whole MQW, resulting in a serious decrease of the output light power. It means that a suitable interlayer thickness design matching with the background doping level of u-GaN interlayer is significant for InGaN-based laser diodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4945015.html;jsessionid=kwVYAW4qwaDYnTUPUmqF1tOK.x-aip-live-06?itemId=/content/aip/journal/adva/6/3/10.1063/1.4945015&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4945015&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4945015'
Right1,Right2,Right3,