Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. T. Lahey, Jr., R. P. Taleyarkhan, and R. I. Nigmatulin, “Sonofusion-Fact or Fiction?,” NURETH-11 (2005).
2.R. P. Taleyarkhan, C. D. West, R. T. Lahey, Jr., R. I. Nigmatulin, R. C. Block, and Y. Xu, “Nuclear emissions during self-nucleated acoustic cavitation,” Phys. Rev. Lett. 96, 034301 (2006).
3.W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, “Sonoluminescence and the prospects for table-top micro-thermonuclear fusion,” Phys. Lett. A 211, 69 (1996).
4.R. P. Taleyarkhan, C. D. West, J. S. Cho, R. T. Lahey, Jr., R. I. Nigmatulin, and R. C. Block, “Evidence for nuclear emissions during acoustic cavitation,” Science 295, 1868 (2002).
5.R. P. Taleyarkhan, J. S. Cho, C. D. West, R. T. Lahey, Jr., R. I. Nigmatulin, and R. C. Block, “Additional evidence of nuclear emissions during acoustic cavitation,” Phys. Rev. E 69, 036109 (2004).
6.T. Ohta, “On the molecular kinetics of acoustic cavitation and the nuclear emission,” Int. J. Hydrogen Energ. 28, 437 (2003).
7.T. Ohta, “Life cycle of cavitation bubble for the nuclear emission,” Int. J. Hydrogen Energ. 29, 529 (2004).
8.C. G. Camara, S. D. Hopkins, K. S. Suslick, and S. J. Putterman, “Upper bound for neutron emission from sonoluminescing bubbles in deuterated aceton,” Phys. Rev. Lett. 98, 064301 (2007).
9.O. B. Khavroshkin, “Cavitation: parameter control,” Kratkie Soobshcheniya po Fizike 35, 15 (2008).
10.N. Zoghi-Foumani and R. Sadighi-Bonabi, “Investigating the possibility of Sonofusion in Deuterated acetone,” Int. J. Hydrogen Energ. 39, 11328 (2014).
11.R. Sadighi-Bonabi, F. Rezeghi, H. Ebrahimi, Sh. Fallahi, and E. Lotfi, “Quasiadiabatic approach for laser-induced single-bubble sonoluminescence,” Phys. Rev. E 85, 016302 (2012).
12.R. Sadighi-Bonabi, F. Alijan Farzad Lahiji, and F. Razeghi, “The effect of viscosity, applied frequency and driven pressure on the laser induced bubble luminescence in water-sulfuric acid mixtures,” Phys. Lett. A, in print.
13.S. Hilgenfeldt, S. Grossmann, and D. Lohse, “A simple explanation of light emission in sonoluminescence,” Nature 398, 402 (1999).
14.S. Hilgenfeldt, S. Grossmann, and D. Lohse, “Sonoluminescence light emission,” Phys. Fluids 11, 1318 (1999).
15.R. Toegel, S. Luther, and D. Lohse, “Viscosity destabilizes sonoluminescing bubbles,” Phys. Rev. Lett. 96, 114301 (2006).
16.R. Toegel, S. Hilgenfeldt, and D. Lohse, “Suppressing dissociation in sonoluminescing bubbles: The effect of excluded volume,” Phys. Rev. Lett. 88, 034301 (2002).
17.Kh. Imani, F. Bemani, M. Silatani, and R. Sadighi-Bonabi, “Ambient temperature effect on single-bubble sonoluminescence in different concentrations of sulfuric acid solutions,” Phys. Rev. E 85, 016329 (2012).
18.M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble Sonoluminescence,” Rev. Mod. Phys. 74, 425 (2002).
19.F. Bemani F and R. Sadighi-Bonabi, “Plasma core at the center of a sonoluminescing bubble,” Phys. Rev. E 87, 013004 (2013).
20.R. Sadighi-Bonabi, M. Mirheydari, H. Ebrahimi, N. Rezaee, and L. Nikzad, “A unique circular path of moving single bubble sonoluminescence in water,” Chin. Phys. B 20, 074302 (2011).
21.X. Lu, A. Prosperetti, R. Toegel, and D. Lohse, “Harmonic enhancement of single-bubble sonoluminescence,” Phys. Rev. E 67, 056310 (2003).
22.A. Moshaii, Kh. Imani, and M. Silatani, “Sonoluminescence radiation from different concentrations of sulfuric acid,” Phys. Rev. E 80, 046325 (2009).
23.R. I. Nigmatulin, I. Sh. Akhatov, A. S. Topolnikov, R. Kh. Bolotnova, N. K. Vakhitova, R. T. Lahey, Jr., and R. P. Taleyarkhan, “Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion,” Physics of Fluids 17, 107106 (2005).
24.F. A. Godínez and M. Navarrete, “Influence of liquid density on the parametric shape instability of sonoluminescence bubbles in water and sulfuric acid,” Phys. Rev. E 84, 016312 (2011).
25.R. Gilmore, “The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid,” California Institute of Technology, Technical Report, No. 26-4, 1952.
26.R. H. Cole, Underwater Explosions (Dover Publications Inc., New York, 1965).
27.C. D. Ohl, “Luminescence from acoustic-driven laser-induced cavitation bubbles,” Phys. Rev. E 61, 2 (2000).
28.D. J. Flannigan and K. S. Suslick, “Plasma line emission during single-bubble cavitation,” Phys. Rev. Lett. 95, 044301 (2005).
29.D. J. Flannigan and K. S. Suslick, “Plasma formation and temperature measurement during single-bubble cavitation,” Nature 434, 52 (2005).
30.D. J. Flannigan and K. S. Suslick, “Inertially confined plasma in an imploding bubble,” Nat. Phys. 6, 598 (2010).

Data & Media loading...


Article metrics loading...



The Possibility of the laser assisted sonofusion is studied via single bubblesonoluminescence (SBSL) in Deuterated acetone (CDO) using quasi-adiabatic and hydro-chemical simulations at the ambient temperatures of 0 and −28.5 °C. The interior temperature of the produced bubbles in Deuterated acetone is 1.6 × 106 in hydro-chemical model and it is reached up to 1.9 × 106 K in the laser induced SBSL bubbles. Under these circumstances, temperature up to 107 can be produced in the center of the bubble in which the thermonuclear D-D fusion reactions are promising under the controlled conditions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd