Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4945343
1.
1.R. T. Lahey, Jr., R. P. Taleyarkhan, and R. I. Nigmatulin, “Sonofusion-Fact or Fiction?,” NURETH-11 (2005).
2.
2.R. P. Taleyarkhan, C. D. West, R. T. Lahey, Jr., R. I. Nigmatulin, R. C. Block, and Y. Xu, “Nuclear emissions during self-nucleated acoustic cavitation,” Phys. Rev. Lett. 96, 034301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.034301
3.
3.W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, “Sonoluminescence and the prospects for table-top micro-thermonuclear fusion,” Phys. Lett. A 211, 69 (1996).
http://dx.doi.org/10.1016/0375-9601(95)00934-5
4.
4.R. P. Taleyarkhan, C. D. West, J. S. Cho, R. T. Lahey, Jr., R. I. Nigmatulin, and R. C. Block, “Evidence for nuclear emissions during acoustic cavitation,” Science 295, 1868 (2002).
http://dx.doi.org/10.1126/science.1067589
5.
5.R. P. Taleyarkhan, J. S. Cho, C. D. West, R. T. Lahey, Jr., R. I. Nigmatulin, and R. C. Block, “Additional evidence of nuclear emissions during acoustic cavitation,” Phys. Rev. E 69, 036109 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.036109
6.
6.T. Ohta, “On the molecular kinetics of acoustic cavitation and the nuclear emission,” Int. J. Hydrogen Energ. 28, 437 (2003).
http://dx.doi.org/10.1016/S0360-3199(02)00077-0
7.
7.T. Ohta, “Life cycle of cavitation bubble for the nuclear emission,” Int. J. Hydrogen Energ. 29, 529 (2004).
http://dx.doi.org/10.1016/S0360-3199(03)00088-0
8.
8.C. G. Camara, S. D. Hopkins, K. S. Suslick, and S. J. Putterman, “Upper bound for neutron emission from sonoluminescing bubbles in deuterated aceton,” Phys. Rev. Lett. 98, 064301 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.064301
9.
9.O. B. Khavroshkin, “Cavitation: parameter control,” Kratkie Soobshcheniya po Fizike 35, 15 (2008).
10.
10.N. Zoghi-Foumani and R. Sadighi-Bonabi, “Investigating the possibility of Sonofusion in Deuterated acetone,” Int. J. Hydrogen Energ. 39, 11328 (2014).
http://dx.doi.org/10.1016/j.ijhydene.2014.04.084
11.
11.R. Sadighi-Bonabi, F. Rezeghi, H. Ebrahimi, Sh. Fallahi, and E. Lotfi, “Quasiadiabatic approach for laser-induced single-bubble sonoluminescence,” Phys. Rev. E 85, 016302 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.016302
12.
12.R. Sadighi-Bonabi, F. Alijan Farzad Lahiji, and F. Razeghi, “The effect of viscosity, applied frequency and driven pressure on the laser induced bubble luminescence in water-sulfuric acid mixtures,” Phys. Lett. A, in print.
13.
13.S. Hilgenfeldt, S. Grossmann, and D. Lohse, “A simple explanation of light emission in sonoluminescence,” Nature 398, 402 (1999).
http://dx.doi.org/10.1038/18842
14.
14.S. Hilgenfeldt, S. Grossmann, and D. Lohse, “Sonoluminescence light emission,” Phys. Fluids 11, 1318 (1999).
http://dx.doi.org/10.1063/1.869997
15.
15.R. Toegel, S. Luther, and D. Lohse, “Viscosity destabilizes sonoluminescing bubbles,” Phys. Rev. Lett. 96, 114301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.114301
16.
16.R. Toegel, S. Hilgenfeldt, and D. Lohse, “Suppressing dissociation in sonoluminescing bubbles: The effect of excluded volume,” Phys. Rev. Lett. 88, 034301 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.034301
17.
17.Kh. Imani, F. Bemani, M. Silatani, and R. Sadighi-Bonabi, “Ambient temperature effect on single-bubble sonoluminescence in different concentrations of sulfuric acid solutions,” Phys. Rev. E 85, 016329 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.016329
18.
18.M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble Sonoluminescence,” Rev. Mod. Phys. 74, 425 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.425
19.
19.F. Bemani F and R. Sadighi-Bonabi, “Plasma core at the center of a sonoluminescing bubble,” Phys. Rev. E 87, 013004 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.013004
20.
20.R. Sadighi-Bonabi, M. Mirheydari, H. Ebrahimi, N. Rezaee, and L. Nikzad, “A unique circular path of moving single bubble sonoluminescence in water,” Chin. Phys. B 20, 074302 (2011).
http://dx.doi.org/10.1088/1674-1056/20/7/074302
21.
21.X. Lu, A. Prosperetti, R. Toegel, and D. Lohse, “Harmonic enhancement of single-bubble sonoluminescence,” Phys. Rev. E 67, 056310 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.056310
22.
22.A. Moshaii, Kh. Imani, and M. Silatani, “Sonoluminescence radiation from different concentrations of sulfuric acid,” Phys. Rev. E 80, 046325 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.046325
23.
23.R. I. Nigmatulin, I. Sh. Akhatov, A. S. Topolnikov, R. Kh. Bolotnova, N. K. Vakhitova, R. T. Lahey, Jr., and R. P. Taleyarkhan, “Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion,” Physics of Fluids 17, 107106 (2005).
http://dx.doi.org/10.1063/1.2104556
24.
24.F. A. Godínez and M. Navarrete, “Influence of liquid density on the parametric shape instability of sonoluminescence bubbles in water and sulfuric acid,” Phys. Rev. E 84, 016312 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.016312
25.
25.R. Gilmore, “The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid,” California Institute of Technology, Technical Report, No. 26-4, 1952.
26.
26.R. H. Cole, Underwater Explosions (Dover Publications Inc., New York, 1965).
27.
27.C. D. Ohl, “Luminescence from acoustic-driven laser-induced cavitation bubbles,” Phys. Rev. E 61, 2 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.1497
28.
28.D. J. Flannigan and K. S. Suslick, “Plasma line emission during single-bubble cavitation,” Phys. Rev. Lett. 95, 044301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.044301
29.
29.D. J. Flannigan and K. S. Suslick, “Plasma formation and temperature measurement during single-bubble cavitation,” Nature 434, 52 (2005).
http://dx.doi.org/10.1038/nature03361
30.
30.D. J. Flannigan and K. S. Suslick, “Inertially confined plasma in an imploding bubble,” Nat. Phys. 6, 598 (2010).
http://dx.doi.org/10.1038/nphys1701
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4945343
Loading
/content/aip/journal/adva/6/3/10.1063/1.4945343
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4945343
2016-03-29
2016-12-10

Abstract

The Possibility of the laser assisted sonofusion is studied via single bubblesonoluminescence (SBSL) in Deuterated acetone (CDO) using quasi-adiabatic and hydro-chemical simulations at the ambient temperatures of 0 and −28.5 °C. The interior temperature of the produced bubbles in Deuterated acetone is 1.6 × 106 in hydro-chemical model and it is reached up to 1.9 × 106 K in the laser induced SBSL bubbles. Under these circumstances, temperature up to 107 can be produced in the center of the bubble in which the thermonuclear D-D fusion reactions are promising under the controlled conditions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4945343.html;jsessionid=Iini8d7Pepoft0DFTkVXLMA7.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4945343&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4945343&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4945343'
Right1,Right2,Right3,