Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4945345
1.
1.Zainab Zafar, Zhen Hua Ni, Xing Wu, Zhi Xiang Shi, Hai Yan Nan, Jing Bai, and Li Tao Sun, CARBON 61, 5762 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.04.065
2.
2.A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
3.
3.A.K. Geim, Science 324, 15301534 (2009).
http://dx.doi.org/10.1126/science.1158877
4.
4.Arun Kumar Singh, Muneer Ahmad, Vivek Kumar Singh, Koo Shin, Yongho Seo, and Jonghwa Eom, ACS Appl. Mater. Interfaces 5, 52765281 (2013).
http://dx.doi.org/10.1021/am401119j
5.
5.Lewis Gomez De Arco, Yi Zhang, Cody W. Schlenker, Koungmin Ryu, Mark E. Thompson, and Chongwu Zhou, ACS Nano 4(5), 28652873 (2010).
http://dx.doi.org/10.1021/nn901587x
6.
6.Sukanta De and Jonathan N. Coleman, ACS Nano 4(5), 27132720 (2010).
http://dx.doi.org/10.1021/nn100343f
7.
7.Amal Kasry, Marcelo A. Kuroda, Glenn J. Martyna, George S. Tulevski, and Ageeth A. Bol, ACS Nano 4(7), 38393844 (2010).
http://dx.doi.org/10.1021/nn100508g
8.
8.Xuan Wang, Linjie Zhi, and Klaus Müllen, Nano Lett. 8, 1 (2008).
http://dx.doi.org/10.1021/nl071228o
9.
9.Seunghyun Lee, Kyunghoon Lee, Chang-Hua Liu, and Zhaohui Zhong, arXiv:1112.1378 [cond- mat.mes-hall].
10.
10.Ryousuke Ishikawa, Masashi Bando, Yoshitaka Morimoto, and Adarsh Sandhu, Nanoscale Research Letters 6, 111 (2011).
http://dx.doi.org/10.1186/1556-276X-6-111
11.
11.Shuping Pang, Yenny Hernandez, Xinliang Feng, and Klaus Müllen, Adv. Funct. Mater. 23, 27792795 (2011).
http://dx.doi.org/10.1002/adma.201100304
12.
12.Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Özyilmaz, Jong-Hyun Ahn, Byung Hee Hong, and Sumio Iijima, Nat. Nanotech 5, 574578 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
13.
13.Zhuhua Zhang, Yang Yang, Fangbo Xu, Luqing Wang, and Boris I. Yakobson, Adv. Funct. Mater 25, 367373 (2015).
http://dx.doi.org/10.1002/adfm.201403024
14.
14.K. Kim, Z. Lee, W. Regan, C. Kisielowski, M. Crommie, and A. Zettl, ACS Nano 5, 2142 (2011).
http://dx.doi.org/10.1021/nn1033423
15.
15.P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, and Y. Zhu, Nature 469, 389 (2011).
http://dx.doi.org/10.1038/nature09718
16.
16.Axel Eckmann, Alexandre Felten, Artem Mishchenko, Liam Britnell, Ralph Krupke, Kostya S. Novoselov, and Cinzia Casiraghi, Nano Lett. 12(8), 39253930 (2012).
http://dx.doi.org/10.1021/nl300901a
17.
17.Alex W. Robertson, Christopher S. Allen, Yimin A. Wu, Kuang He, Jaco Olivier, Jan Neethling, Angus I. Kirkland, and Warner, Nature Communications 3, 1144 (2012).
http://dx.doi.org/10.1038/ncomms2141
18.
18.Jae-Hyun Lee, Eun Kyung Lee, Won-Jae Joo, Yamujin Jang, Byung-Sung Kim, Jae Young Lim, Soon-Hyung Choi, Sung Joon Ahn, Joung Real Ahn, Min-Ho Park, Cheol-Woong Yang, Byoung Lyong Choi, Sung-Woo Hwang, and Dongmok Whang, Science 18, 344 (2014).
19.
19.Frank Mendoza, Tej B. Limbu, Brad R. Weiner, and Gerardo Morell, Diamond and Relat. Mat. 51, 3438 (2015).
http://dx.doi.org/10.1016/j.diamond.2014.11.001
20.
20.Xuesong Li, Carl W. Magnuson, Archana Venugopal, Rudolf M. Tromp, James B. Hannon, Eric M. Vogel, Luigi Colombo, and Rodney S. Ruoff, J. Am. Chem. Soc. 133(9), 28162819 (2011).
http://dx.doi.org/10.1021/ja109793s
21.
21.Zheng Yan, Jian Lin, Zhiwei Peng, Zhengzong Sun, Yu Zhu, Lei Li, Changsheng Xiang, E. Loïc Samuel, Carter Kittrell, and James M. Tour, ACS Nano 6(10), 91109117 (2012).
http://dx.doi.org/10.1021/nn303352k
22.
22.Hong Wang, Guanzhong Wang, Pengfei Bao, Shaolin Yang, Wei Zhu, Xing Xie, and Wen-Jun Zhang, J. Am. Chem. Soc. 134, 36273630 (2012).
http://dx.doi.org/10.1021/ja2105976
23.
23.Chaocheng Wang, Wei Chen, Cheng Han, Guang Wang, Binbing Tang, Changxin Tang, Yan Wang, Wennan Zou, Wei Chen, Xue-Ao Zhang, Shiqiao Qin, Shengli Chang, and Li Wang, SCIENTIFIC REPORTS 4(2014), 4537 (2014).
24.
24.Chun Ning Lau, Wenzhong Bao, and Jairo Velasco, Jr., Materialstoday 15(6), 238245 (2012).
25.
25.L. Hao, J. Gallop, S. Goniszewski, O. Shaforost, N. Klein, and R. Yakimova, Appl. Phys. Lett. 123103 (2013).
http://dx.doi.org/10.1063/1.4821268
26.
26.L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, Physics Reports 473, 5187 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.02.003
27.
27.Daniel R. Lenski and Michael S. Fuhrer, J. Appl. Phys. 110, 013720 (2011).
http://dx.doi.org/10.1063/1.3605545
28.
28.Y. H. Lu, W. Chen, Y. P. Feng, and P. M. He, J. Phys. Chem. B 113(1), (2009).
29.
29.Daniel Wegner, Ryan Yamachika, Yayu Wang, Victor W. Brar, Bart M. Bartlett, Jeffrey R. Long, and Michael F. Crommie, Nano Lett. 8(1), 131– 135 (2008).
http://dx.doi.org/10.1021/nl072217y
30.
30.Fethullah Günes, Hyeon-Jin Shin, Chandan Biswas, Gang Hee Han, Eun Sung Kim, Seung Jin Chae, Jae-Young Choi, and Young Hee Lee, ACS Nano 4(8), 45954600 (2010).
http://dx.doi.org/10.1021/nn1008808
31.
31.Ivan Khrapach, Freddie Withers, Thomas H. Bointon, Dmitry K. Polyushkin, William L. Barnes, Saverio Russo, and Monica F. Craciun, Adv. Mater 24, 28442849 (2012).
http://dx.doi.org/10.1002/adma.201200489
32.
32.Andrew C. Crowther, Amanda Ghassaei, Naeyoung Jung, and Louis E. Brus, ACS Nano 6(2), 18651875 (2012).
http://dx.doi.org/10.1021/nn300252a
33.
33.Rakesh Voggu, Barun Das, Chandra Sekhar Rout, and C N R Rao, J. Phys.: Condens. Matter 20, 472204 (2008).
http://dx.doi.org/10.1088/0953-8984/20/47/472204
34.
34.Ting-Fung Chung, Rui He, Tai-Lung Wu, and Yong P. Chen, Nano Lett. 15(2), 12031210 (2015).
http://dx.doi.org/10.1021/nl504318a
35.
35.Kwanpyo Kim, Sinisa Coh, Liang Z. Tan, William Regan, Jong Min Yuk, Eric Chatterjee, M. F. Crommie, Marvin L. Cohen, Steven G. Louie, and A. Zettl, PRL 108, 246103 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.246103
36.
36.A. Pawlukojć, W. Sawka-Dobrowolska, G. Bator, L. Sobczyk, E. Grech, and J. Nowicka-Scheibe, Chemical Physics 327, 311318 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.05.003
37.
37.Joel S. Miller, Angew. Chem. Int. Ed. 45, 25082525 (2006).
http://dx.doi.org/10.1002/anie.200503277
38.
38.Siham Y. AlQaradawi and El-Metwally Nour, Spectrochimica Acta Part A 62, 578581 (2005).
http://dx.doi.org/10.1016/j.saa.2005.01.025
39.
39.Tohru Takenaka, Shin-ichi Tadokoro, and Natsu Uyeda, Bull. Inst. Chem. Res. 48(6), 249263 (1970).
40.
40.Seema Bagchi (Chattaraj), Kakali Sharma, Ashutosh Chakrabortty, and Sujit Chandra Lahiri, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 95, 637647 (2012).
http://dx.doi.org/10.1016/j.saa.2012.04.069
41.
41.Diana Nanova, Sebastian Beck, Andreas Fuchs, Tobias Glaser, Christian Lennartz, Wolfgang Kowalsky, Annemarie Pucci, and Michael Kroeger, Organic Electronics 13, 12371244 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.02.021
42.
42.Kin Fai Mak, Long Ju, Feng Wang, and Tony F. Heinz, Solid State Communications 152, 13411349 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.064
43.
43.Wenzhong Bao, Jiayu Wan, Xiaogang Han, Xinghan Cai, Hongli Zhu, Dohun Kim, Dakang Ma, Yunlu Xu, Jeremy N. Munday, H. Dennis Drew, Michael S. Fuhrer, and Liangbing Hu, Nature Communications 5, 4224 (2014).
http://dx.doi.org/10.1038/ncomms5224
44.
44.Hong-Zhang Geng, Ki Kang Kim, Kang Pyo So, Young Sil Lee, Youngkyu Chang, and Young Hee Lee, J. AM. CHEM. SOC. 129, 77587759 (2007).
http://dx.doi.org/10.1021/ja0722224
45.
45.Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han, David Chen, Richard D. Piner, Luigi Colombo, and Rodney S. Ruoff, Nano Lett. 9, 43594363 (2009).
http://dx.doi.org/10.1021/nl902623y
46.
46.Jingjing Wang, Zhiqiang Fang, Hongli Zhu, Binyu Gao, Sean Garner, Pat Cimo, Zachary Barcikowski, Alice Mignerey, and Liangbing Hu, Thin Solid Films 556, 1317 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.12.060
47.
47.Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong- Hyun Ahn, Philip Kim, Jae-Young Choi, and Byung Hee Hong, Nature 457, 706710 (2009).
http://dx.doi.org/10.1038/nature07719
48.
48.Junbo Wu, Héctor A. Becerril, Zhenan Bao, Zunfeng Liu, Yongsheng Chen, and Peter Peumans, Appl. Phys. Lett. 92, 263302 (2008).
http://dx.doi.org/10.1063/1.2924771
49.
49.Yumi Ahn, Youngjun Jeong, Donghwa Lee, and Youngu Lee, ACS NANO 9(3), 31253133 (2015).
http://dx.doi.org/10.1021/acsnano.5b00053
50.
50.Iskandar N. Kholmanov, Carl W. Magnuson, Ali E. Aliev, Huifeng Li, Bin Zhang, Ji Won Suk, Li Li Zhang, Eric Peng, S. Hossein Mousavi, Alexander B. Khanikaev, Richard Piner, Gennady Shvets, and Rodney S. Ruoff, Nano Lett. 12, 56795683 (2012).
http://dx.doi.org/10.1021/nl302870x
51.
51.Bing Deng, Po-Chun Hsu, Guanchu Chen, B. N. Chandrashekar, Lei Liao, Zhawulie Ayitimuda, Jinxiong Wu, Yunfan Guo, Li Lin, Yu Zhou, Mahaya Aisijiang, Qin Xie, Yi Cui, Zhongfan Liu, and Hailin Peng, Nano Lett. 15, 42064213 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b01531
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4945345
Loading
/content/aip/journal/adva/6/3/10.1063/1.4945345
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4945345
2016-03-29
2016-09-27

Abstract

We report the optical and electrical properties of chemically-doped bilayer graphene stack by tetracyanoethylene, a strong electron acceptor. The Tetracyanoethylene doping on the bilayer graphene via charge transfer was confirmed by Raman spectroscopy and Infrared Fourier transform spectroscopy. Dopedgraphene shows a significant increase in the sheet carrier concentration of up to 1.520 × 1013 cm−2 with a concomitant reduction of the sheet resistance down to 414.1 Ω/sq. The high optical transmittance ( 84%) in the visible region in combination with the low sheet resistance of the Tetracyanoethylene-doped bilayer graphene stack opens up the possibility of making transparent conducting electrodes for practical applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4945345.html;jsessionid=WW5PAbHAprI15mzAfSri3b_9.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4945345&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4945345&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4945345'
Right1,Right2,Right3,