Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4945383
1.
1.J. Faist, F. Capasso, D. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
http://dx.doi.org/10.1126/science.264.5158.553
2.
2.P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. J. Wang, J. Y. Fan, and C. F. Gmachl, Nature Photon. 4, 95 (2010).
http://dx.doi.org/10.1038/nphoton.2009.262
3.
3.A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, Appl. Phys. B 90, 65 (2008).
http://dx.doi.org/10.1007/s00340-007-2846-9
4.
4.C. Bauer, U. Willer, and W. Schade, Opt. Eng. 49, 111126 (2010).
http://dx.doi.org/10.1117/1.3505831
5.
5.Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nature photon. 6, 432 (2012).
http://dx.doi.org/10.1038/nphoton.2012.143
6.
6.Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, Appl. Phys. Lett. 95, 221104 (2009).
http://dx.doi.org/10.1063/1.3270043
7.
7.B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, App. Phys. Lett. 97, 131112 (2010).
http://dx.doi.org/10.1063/1.3496043
8.
8.D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 106, 091105 (2015).
http://dx.doi.org/10.1063/1.4914477
9.
9.S. Menzel, L. Diehl, C. Pflugl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Cappasso, Opt. Express. 19, 16229 (2011).
http://dx.doi.org/10.1364/OE.19.016229
10.
10.L. K. Hoffmann, M. Klinkmuller, E. Mujagic, M. P. Semtsiv, W. Schrenk, W. T. Masselink, and G. Strasser, Opt. Express. 17, 649 (2009).
http://dx.doi.org/10.1364/OE.17.000649
11.
11.D. E. Ackley and R. W. H. Engelmann, Appl. Phys. Lett. 39, 27 (1981).
http://dx.doi.org/10.1063/1.92551
12.
12.D. Botez and J. C. Connolly, Appl. Phys. Lett. 43, 1096 (1983).
http://dx.doi.org/10.1063/1.94239
13.
13.D. Botez and J. C. Connolly, Appl. Phys. Lett. 43, 1096 (1983).
http://dx.doi.org/10.1063/1.94239
14.
14.G. M. De Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, AIP Adv. 1, 032165 (2011).
http://dx.doi.org/10.1063/1.3643690
15.
15.J. D. Kirch, C.-C. Chang, C. Boyle, L. J. Mawst, D. Lindberg III, T. Earles, and D. Botez, Appl. Phys. Lett. 106, 061113 (2015).
http://dx.doi.org/10.1063/1.4908178
16.
16.Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, Appl. Phys. Lett. 106, 142104 (2015).
http://dx.doi.org/10.1063/1.4917294
17.
17.D. Hofstetter, M. Beck, T. Aellen, and J. Faist, Appl. Phys. Lett. 78, 396 (2001).
http://dx.doi.org/10.1063/1.1340865
18.
18.W. Streifer, A. Hardy, R. D. Burnham, and D. R. Scifres, Electron. Lett. 21, 118 (1985).
http://dx.doi.org/10.1049/el:19850082
19.
19.Y. Twu, A. Dienes, S. Wang, and J. R. Whinnery, Appl. Phys. Lett. 45, 709 (1984).
http://dx.doi.org/10.1063/1.95389
20.
20.A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, Opt. Express. 22, 1203 (2014).
http://dx.doi.org/10.1364/OE.22.001203
21.
21.J. C. Zhang, L.J. Wang, W.F. Liu, F.Q. Liu, L.H. Zhao, S.Q. Zhai, J.Q. Liu, and Z.G. Wang, J. Semicond. 33, 024005 (2012).
http://dx.doi.org/10.1088/1674-4926/33/2/024005
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4945383
Loading
/content/aip/journal/adva/6/3/10.1063/1.4945383
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4945383
2016-03-31
2016-09-27

Abstract

A phase-locked quantum cascade laser(QCL) array consisting of one hundred elements that were integrated in parallel was achieved at λ ∼ 4.6 μm. The proposed Fraunhofer’s multiple slits diffraction model predicted and explained the far-field pattern of the phase-locked laser array. A single-lobed far-field pattern, attributed to the emission of an in-phase-like supermode, is obtained near the threshold (I). Even at 1.5 I, greater than 73.3% of the laser output power is concentrated in a low-divergence beam with an optical power of up to 40 W.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4945383.html;jsessionid=Pai-wTVHN_KciM-75So5uQ1f.x-aip-live-06?itemId=/content/aip/journal/adva/6/3/10.1063/1.4945383&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4945383&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4945383'
Right1,Right2,Right3,