Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4945394
1.
1.Z. Zanolli, J. C. Wojde, J. Íñiguez, and P. Ghosez, Phys. Rev. B 88, 060102 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.060102
2.
2.M. Ležaić and N. A. Spaldin, Phys. Rev. B 83, 024410 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.024410
3.
3.S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, Phys. Rev. Lett. 111, 087601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.087601
4.
4.I. C. Infante, J. Juraszek, S. Fusil, B. Dupé, P. Gemeiner, O. Diéguez, F. Pailloux, S. Jouen, E. Jacquet, G. Geneste, J. Pacaud, J. Íñiguez, L. Bellaiche, A. Barthélémy, B. Dkhil, and M. Bibes, Phys. Rev. Lett. 107, 237601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.237601
5.
5.R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 2129 (2007).
http://dx.doi.org/10.1038/nmat1805
6.
6.W. Eerenstein, N. D. Mathur, and J.F. Scott, Nature 442, 759-765 (2006).
http://dx.doi.org/10.1038/nature05023
7.
7.J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B 71, 014113 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014113
8.
8.X. Z. Wang, H. R. Liu, and B. W. Yan, J. Sol-Gel Sci. Technol. 47, 124-127 (2008).
9.
9.M. M. Sutar, A. N. Tarale, S. R. Jigajeni, S. B. Kulkarni, and P. B. Joshi, Appl. Nanosci. 2, 311-317 (2012).
http://dx.doi.org/10.1007/s13204-012-0119-3
10.
10.M. M. Sutar, S. R. Jigajeni, A. N. Tarale, S. B. Kulkarni, and P. B. Joshi, J. Mater. Sci. : Mater. Electron 25, 3771-3778 (2014).
http://dx.doi.org/10.1007/s10854-014-2088-7
11.
11.Y. L. Tian, W. Zhang, L. Li, Y.Q. Lin, and X. M. Chen, J. Mater. Sci. : Mater. Electron 22, 116-119 (2011).
http://dx.doi.org/10.1007/s10854-010-0097-8
12.
12.C. L. Bull and P. F. Mcmillan, J. Solid State Chem. 177, 23232328 (2004).
http://dx.doi.org/10.1016/j.jssc.2004.02.022
13.
13.N. S. Rogado, J. Li, A. W. Sleight, and M. A. Subramanian, Adv, Mater. 17, 2225 (2005).
http://dx.doi.org/10.1002/adma.200500737
14.
14.H. J. Zhao, W. Ren, Y. Yang, J. Íñiguez, X. M. Chen, and L. Bellaiche, Nature Communications 5, 4021 (2014).
15.
15.J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou, and K. Burke, Phys. Rev. Lrtt. 100, 136406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136406
16.
16.M. Zhu, Y. Lin, E. W. C. Lo, Q. Wang, Z. J. Zhao, and W. H. Xie, Appl. Phys. Lett. 100, 062406 (2012).
http://dx.doi.org/10.1063/1.3683550
17.
17.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758-1775 (1993).
http://dx.doi.org/10.1103/PhysRevB.59.1758
18.
18.A. M. Glazer, Acta Crystallogr. , Sect. B 28, 3384-3392 (1972).
http://dx.doi.org/10.1107/S0567740872007976
19.
19.C. Ganeshraj and P._N. Santhosh, J. Appl. Phys. 115, 17E106 (2014).
http://dx.doi.org/10.1063/1.4855995
20.
20.N. A. Benedek and C. J. Fennie, Phys. Rev. Lett 106, 107204 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.107204
21.
21.J. M. Rondinelli and C. J. Fennie, Adv. Mater. 24, 1961-1968 (2012).
http://dx.doi.org/10.1002/adma.201104674
22.
22.A. T. Mulder, N. A. Benedek, J. M. Rondinelli, and C. J. Fennie, Adv. Funct. Mater. 23, 4810-4820 (2013).
23.
23.R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.1651
24.
24.N. A. Benedek, A. T. Mulder, and C. J. Fennie, J. Solid State Chem. 195, 11-20 (2012).
http://dx.doi.org/10.1016/j.jssc.2012.04.012
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4945394
Loading
/content/aip/journal/adva/6/3/10.1063/1.4945394
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4945394
2016-03-30
2016-10-01

Abstract

Employing first-principles calculations, structural, electronic properties of new multiferroicmaterial ErNiMnO/LaNiMnOperovskitesuperlattice are investigated. This structure is computed as monoclinic phase with obvious distortion. The average in-plane anti-phase rotation angle, average out-of-plane in-phase rotation angle and other microscopic features are reported in this paper. Ni and Mn are found in this superlattice that stay high spin states. These microscopic properties play important roles in multiferroicproperties. Based on these microscopic features, the relationship between the direction of spontaneous polarization and the order of substitution in neighboring A-O layers is explained. Finally, we try to enhance the electrical polarization magnitude by 32% by altering the previous superlattice as LaErNiMnO structure. Our results show that both repulsion force of A site rare earth ions and the arrangement of B site ions can exert influences on spontaneous polarization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4945394.html;jsessionid=Nq8J_iuHy7fozXgW8ARD3pgE.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4945394&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4945394&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4945394'
Right1,Right2,Right3,