Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4945437
1.
1.M. Lončar, D. Nedeljković, T. Doll, J. Vučkovič, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
http://dx.doi.org/10.1063/1.1311604
2.
2.H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
http://dx.doi.org/10.1126/science.1100968
3.
3.S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
http://dx.doi.org/10.1038/35036532
4.
4.L. Ferrier, O. E. Daif, X. Letartre, P. R. Romeo, C. Seassal, R. Mazurczyk, and P. Viktorovich, Opt. Express 17, 9780 (2009).
http://dx.doi.org/10.1364/OE.17.009780
5.
5.J. M. Lee, J. W. Choung, J. Yi, D. H. Lee, M. Samal, D. K. Yi, C.-H. Lee, G.-C. Yi, C.-H. Lee, G.-C. Yi, U. Paik, J. A. Rogers, and W. I. Park, Nano Lett. 10, 2783 (2010).
http://dx.doi.org/10.1021/nl100648y
6.
6.S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, Nature Photon. 4, 648 (2010).
http://dx.doi.org/10.1038/nphoton.2010.177
7.
7.T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, Appl. Phys. Lett. 94, 241110 (2009).
http://dx.doi.org/10.1063/1.3152245
8.
8.T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, Opt. Express 18(6), 5420 (2010).
http://dx.doi.org/10.1364/OE.18.005420
9.
9.C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Lončar, and H. Park, Nano Lett. 13, 248 (2013).
http://dx.doi.org/10.1021/nl303987y
10.
10.A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, Nano Lett. 11, 5387 (2011).
http://dx.doi.org/10.1021/nl2030163
11.
11.J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
http://dx.doi.org/10.1038/386143a0
12.
12.J.-H. Choi, Y.-S. No, M.-S. Hwang, S.-Y. Kwon, K.-Y. Jeong, S.-H. Kwon, J.-K. Yang, and H.-G. Park, Appl. Phys. Lett. 104, 091120 (2014).
http://dx.doi.org/10.1063/1.4867886
13.
13.H.-Y. Ryu, M. Notomi, and Y.-H. Lee, Phys. Rev. B 68, 045209 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.045209
14.
14.S.-H. Kwon, S.-H. Kim, S.-K. Kim, Y.-H. Lee, and S.-B. Kim, Opt. Express 12, 5356 (2004).
http://dx.doi.org/10.1364/OPEX.12.005356
15.
15.F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, Opt. Express 15, 10890 (2007).
http://dx.doi.org/10.1364/OE.15.010890
16.
16.J.-K. Yang, S.-H. Kim, G.-H. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, Appl. Phys. Lett. 84, 3016 (2004).
http://dx.doi.org/10.1063/1.1715145
17.
17.J.-K. Yang, M.-K. Seo, I.-K. Hwang, S.-B. Kim, and Y.-H. Lee, Appl. Phys. Lett. 93, 211103 (2008).
http://dx.doi.org/10.1063/1.3036954
18.
18. In Ref. 12, the pumping beam size was ∼4 μm, however, in our experiments, the pump beam size was ∼6 μm, which might increase the threshold pump power. For better understanding, it is necessary to investigate the pump area dependence of the threshold power.
19.
19.K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, Appl. Phys. Lett. 83, 1915 (2003).
http://dx.doi.org/10.1063/1.1606866
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4945437
Loading
/content/aip/journal/adva/6/3/10.1063/1.4945437
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4945437
2016-03-31
2016-12-05

Abstract

We demonstrated lasing at the Γ-point band-edge (BE) modes in optimized two-dimensional iron-nail-shaped rod photonic crystals by optical pulse pumping at room temperature. As the radius of the rod increased quadratically toward the edge of the pattern, the quality factor of the Γ-point BE mode increased up to three times, and the modal volume decreased to 56% compared with the values of the original Γ-point BE mode because of the reduction of the optical loss in the horizontal direction. Single-mode lasing from an optimized iron-nail-shaped rod array with an InGaAsP multiple quantum well embedded in the nail heads was observed at a low threshold pump power of 160 μW. Real-image-based numerical simulations showed that the lasing actions originated from the optimized Γ-point BE mode and agreed well with the measurement results, including the lasing polarization, wavelength, and near-field image.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4945437.html;jsessionid=KNaB3BNzSVxHTXs9YiDXZj0m.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4945437&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4945437&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4945437'
Right1,Right2,Right3,