Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4945439
1.
1.C. Anfinsen, Biochem. J. 128, 737 (1972).
http://dx.doi.org/10.1042/bj1280737
2.
2.H. Frauenfelder, P.W. Fenimore, G. Chen, and B.H. Mcmahon, Proc. Natl. Acad. Sci. USA 103, 15469 (2006).
http://dx.doi.org/10.1073/pnas.0607168103
3.
3.T. E. Creighton, Current Biology 7, R380 (1997).
http://dx.doi.org/10.1016/S0960-9822(06)00180-1
4.
4.A. Fulton, Cell 30, 345 (1982).
http://dx.doi.org/10.1016/0092-8674(82)90231-8
5.
5.A.P. Minton, Mol. Cell Biochem. 55, 119 (1983).
http://dx.doi.org/10.1007/BF00673707
6.
6.N.M. Micaelo and C.M. Soares, J. Phys. Chem. B 112, 2566 (2008).
http://dx.doi.org/10.1021/jp0766050
7.
7.K.S. Rao, T. Singh, T.J. Trivedi, and A. Kumar, J. Phys. Chem. B 115, 13847 (2011).
http://dx.doi.org/10.1021/jp2076275
8.
8.S.J. Hagen, Current Protein & Peptide Science 11, 385 (2010).
http://dx.doi.org/10.2174/138920310791330596
9.
9.F. Chiti and C.M. Dobson, Annu. Rev. Biochem. 75, 333 (2006).
http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901
10.
10.P.T. Lansbury, Proc. Natl. Acad. Sci. USA 96, 3342 (1999).
http://dx.doi.org/10.1073/pnas.96.7.3342
11.
11.J. Schnabel, Nature 464, 828 (2010).
http://dx.doi.org/10.1038/464828a
12.
12.H.R. Kalhor, M. Kamizi, J. Akbari, and A. Heydari, Biomacromolecules 10, 2468 (2009).
http://dx.doi.org/10.1021/bm900428q
13.
13.Y. Akdogan and D. Hinderberger, J. Phys. Chem. B 115, 15422 (2011).
http://dx.doi.org/10.1021/jp209646f
14.
14.J. Beld, K.J. Woycechowsky, and D. Hilvert, ACS Chem. Biol. 5, 177 (2010).
http://dx.doi.org/10.1021/cb9002688
15.
15.A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W. H. Freeman, New York, 1999).
16.
16.M. Auton and D.W. Bolen, Methods Enzymol. 428, 397 (2007).
http://dx.doi.org/10.1016/S0076-6879(07)28023-1
17.
17.J.A. Schellman, Biophys. J. 85, 108 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74459-2
18.
18.R. Miller, J.K. Ferri, A. Javadi, J. Krägel, N. Mucic, and R. Wüstneck, Colloid Polym. Sci. 288, 937 (2010).
http://dx.doi.org/10.1007/s00396-010-2227-5
19.
19.N. Tokuriki, M. Kinjo, S. Negi, M. Hoshino, Y. Goto, I. Urabe, and T. Yomo, Protein Sci. 13, 125 (2004).
http://dx.doi.org/10.1110/ps.03288104
20.
20.Y. Qu and D.W. Bolen, Biophys. Chem. 101, 155 (2002).
http://dx.doi.org/10.1016/S0301-4622(02)00148-5
21.
21.K. Sankaranarayanan, A. Dhathathreyan, and R. Miller, J. Phys. Chem. B 114, 8067 (2010).
http://dx.doi.org/10.1021/jp100896b
22.
22.Z.J. Deng, M. Liang, M. Monteiro, I. Toth, and R.F. Minchin, Nature Nanotechnology 6, 39 (2011).
http://dx.doi.org/10.1038/nnano.2010.250
23.
23.R.J. Ellis, TRENDS in Biochemical Sciences 26, 597 (2001).
http://dx.doi.org/10.1016/S0968-0004(01)01938-7
24.
24.A. S. Zhao, S. Zhou, Y. Wang, J. Chen, C. R. Ye, and N. Huang, RSC Adv. 4, 40428 (2014).
http://dx.doi.org/10.1039/C4RA07803A
25.
25.L. Whitemore and B. Wallace, Nucleic Acids Research 32, W668 (2004).
http://dx.doi.org/10.1093/nar/gkh371
26.
26.Z. Bikadi and E. Hazai, Cheminf. 1, 15 (2009).
http://dx.doi.org/10.1186/1758-2946-1-15
27.
28.
28.G. M. Morris, D. S. Goodsell, R. S Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, J. Comp. Chem. 19, 1639 (1998).
http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
29.
29.F. J. Solis and R. J. B. Wets, Mathematics of Operations Research 6, 19 (1981).
http://dx.doi.org/10.1287/moor.6.1.19
30.
30.S.Y. Jung, S.M. Lim, F. Albertorio, G. Kim, M.C. Gurau, R.D. Yang, M.A. Holden, and P.S. Cremer, Journal American Chemical Society 125, 12782 (2003).
http://dx.doi.org/10.1021/ja037263o
31.
31.H.A. Benesi and J.H. Hildebrand, J. Am. Chem. Soc. 71, 2703 (1949).
http://dx.doi.org/10.1021/ja01176a030
32.
32.K. Sankaranarayanan, Biointerphases 10, 021009 (2015).
http://dx.doi.org/10.1116/1.4922291
33.
33.J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, USA, 2006).
34.
34.P. Schwinte, J.C. Voegel, C. Picart, Y. Haikel, P. Schaaf, and B. Szalontai, J. Phys. Chem. B 105, 11906 (2001).
http://dx.doi.org/10.1021/jp0123031
35.
35.R. Itri, W. Caetano, L.R.S. Barbosa, and M.S. Baptista, Braz. J. Phys. 34, 58 (2004).
http://dx.doi.org/10.1590/S0103-97332004000100009
36.
36.(a) P. Attri, P. Venkatesu, A. Kumar, and N. Byrne, Phys. Chem. Chem. Phys. 13, 17023 (2011);
http://dx.doi.org/10.1039/c1cp22195g
36.(b) M. J. Lee, H. M. Lin, and P. Venkatesu, J.Phys.Chem.B 113, 5327 (2009);
http://dx.doi.org/10.1021/jp8113013
36.(c) P. Attri, P. Venkatesu, and M.J. Lee, J.Phys.Chem.B 114, 1471 (2010).
http://dx.doi.org/10.1021/jp9092332
37.
37.L.S. Taylor, P. York, A.C. Williams, H.G. Edwards, V. Mehta, G.S. Jackson, I.G. Badcoe, and A.R. Clarke, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1253, 39 (1995).
http://dx.doi.org/10.1016/0167-4838(95)00142-H
38.
38.S. Mittal and L. R. Singh, PLoS ONE 8, e78936 (2013).
http://dx.doi.org/10.1371/journal.pone.0078936
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4945439
Loading
/content/aip/journal/adva/6/3/10.1063/1.4945439
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4945439
2016-03-31
2016-12-03

Abstract

Ficoll is a neutral, highly branched polymer used as a molecular crowder in the study of proteins. Ficoll is also part of Ficoll-Paque used in biology laboratories to separate blood to its components (erythrocytes, leukocytes etc.,). Role of Ficoll in the urea induced denaturation of protein Fibrinogen (Fg) has been analyzed using fluorescence, circular dichroism, molecular docking and interfacial studies. Fluorescence studies show that Ficoll prevents quenching of Fg in the presence of urea. From the circular dichroism spectra, Fg shows conformational transition to random coil with urea of 6 M concentration. Ficoll helps to shift this denaturation concentration to 8 M and thus constraints by shielding Fg during the process. Molecular docking studies indicate that Ficoll interacts favorably with the protein than urea. The surface tension and shear viscosity analysis shows clearly that the protein is shielded by Ficoll.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4945439.html;jsessionid=IuebL9OIWZGW_R-U3M0lgmZ0.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4945439&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4945439&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4945439'
Right1,Right2,Right3,