Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4945441
1.
1.M.E. Davis, Nature 417, 813 (2002).
http://dx.doi.org/10.1038/nature00785
2.
2.G. Q. Lu and X. S. Zhao, Nanoporous Materials - Science and Engineering (Imperial College Press, London, 2004).
3.
3.M. J. Sailor, Porous Silicon in Practice: Preparation, Characterization and Applications (John Wiley & Sons, 2012).
4.
4.L. Canham, Handbook of Porous Silicon (Springer, 2015).
5.
5.G. Amato, C. Delerue, and H. J. VonBardeleben, Structural and optical properties of porous silicon nanostructures (CRC Press, 1998).
6.
6.D. Bellet, P. Lamagnere, A. Vincent, and Y. Brechet, J. Appl. Phys. 80, 3772 (1996).
http://dx.doi.org/10.1063/1.363305
7.
7.C. Populaire, B. Remaki, V. Lysenko, D. Barbier, H. Artmann, and T. Pannek, Appl. Phys. Lett. 83, 1370 (2003).
http://dx.doi.org/10.1063/1.1603336
8.
8.S. Dourdain, D. T. Britton, H. Reichert, and A. Gibaud, Appl. Phys. Lett. 93, 183108 (2008).
http://dx.doi.org/10.1063/1.2996412
9.
9.L. H. Ma, Q. S. Yang, X. H. Yan, and Q. H. Qin, Mech. Mater. 73, 58 (2014).
http://dx.doi.org/10.1016/j.mechmat.2014.02.005
10.
10.J. C. Rasaiah, S. Garde, and G. Hummer, Annu. Rev. Phys. Chem. 59, 713 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093815
11.
11.G. Y. Gor and A. V. Neimark, Langmuir 26, 13021 (2010).
http://dx.doi.org/10.1021/la1019247
12.
12.G. Y. Gor and A. V. Neimark, Langmuir 27, 6926 (2011).
http://dx.doi.org/10.1021/la201271p
13.
13.F. T. Meehan, Proc. R. Soc. London A 115, 199 (1927).
http://dx.doi.org/10.1098/rspa.1927.0085
14.
14.D. H. Bangham and N. Fakhoury, Nature 122, 681 (1928).
http://dx.doi.org/10.1038/122681b0
15.
15.O. K. Krasilnikova, B. P. Bering, V. V. Serpinskii, and M. M. Dubinin, Bull. Acad. Sci. USSR Div. Chem. Sci. 26, 1099 (1977).
http://dx.doi.org/10.1007/BF01152733
16.
16.G. Dolino, D. Bellet, and C. Faivre, Phys. Rev. B 54, 17919 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17919
17.
17.T. Herman, J. Day, and J. Beamish, Phys. Rev. B 73, 094127 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094127
18.
18.S. Dourdain, D. Britton, H. Reichert, and A. Gibaud, Appl. Phys. Lett. 93, 183108 (2008).
http://dx.doi.org/10.1063/1.2996412
19.
19.B. J. Melde, B. J. Johnson, and P. T. Charles, Sensors 8, 5202 (2008).
http://dx.doi.org/10.3390/s8085202
20.
20.J. Biener, A. Wittstock, L. A. Zepeda-Ruiz, M. M. Biener, V. Zielasek, D. Kramer, R. N. Viswanath, J. Weissmuller, M. Baumer, and A. V. Hamza, Nature Mater. 8, 47 (2009).
http://dx.doi.org/10.1038/nmat2335
21.
21.J. Prass, D. Muter, P. Fratzl, and O. Paris, Appl. Phys. Lett. 95, 083121 (2009).
http://dx.doi.org/10.1063/1.3213564
22.
22.G. H. Findenegg, S. Jahnert, D. Muter, J. Prass, and O. Paris, Phys. Chem. Chem. Phys. 12, 7211 (2010).
http://dx.doi.org/10.1039/c001541p
23.
23.N. Muroyama, A. Yoshimura, Y. Kubota, K. Miyasaka, T. Ohsuna, R. Ryoo, P. I. Ravikovitch, A. V. Neimark, M. Takata, and O. Terasaki, J. Phys. Chem. C 112, 10803 (2008).
http://dx.doi.org/10.1021/jp800385t
24.
24.A. Grosman, J. Puibasset, and E. Rolley, EPL 109, 56002 (2015).
http://dx.doi.org/10.1209/0295-5075/109/56002
25.
25.G. Dolino, D. Bellet, and C. Faivre, Phys. Rev. B 54, 17919 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17919
26.
26.G. Gunther, J. Prass, O. Paris, and M. Schoen, Phys. Rev. Lett. 101, 086104 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.086104
27.
27.G. Y. Gor, L. Bertinetti, N. Bernstein, T. Hofmann, P. Fratzl, and P. Huber, Appl. Phys. Lett. 106, 261901 (2015).
http://dx.doi.org/10.1063/1.4923240
28.
28.M. E. Gurtin and A. I. Murdoch, Int. J Solids Struct. 14, 431 (1978).
http://dx.doi.org/10.1016/0020-7683(78)90008-2
29.
29.H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, J Mech. Phys. Solids 53, 1574 (2005).
http://dx.doi.org/10.1016/j.jmps.2005.02.009
30.
30.D. Lu, Y. M. Xie, Q. Li, X. Huang, and S. Zhou, Appl. Phys. Lett. 105, 101903 (2014).
http://dx.doi.org/10.1063/1.4895582
31.
31.X. Q. Feng, R. Xia, X. Li, and B. Li, Appl. Phys. Lett. 94, 011916 (2009).
http://dx.doi.org/10.1063/1.3067999
32.
32.H. L. Duan, J. Wang, B. L. Karihaloo, and Z. P. Huang, Acta Mater. 54, 2983 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.02.035
33.
33.T. Chen, G. J. Dvorak, and C. C. Yu, Acta Mech. 188, 39 (2007).
http://dx.doi.org/10.1007/s00707-006-0371-2
34.
34.S. G. Mogilevskaya, S. L. Crouch, A. La Grotta, and H. K. Stolarski, Compos. Sci. Technol. 70, 427 (2010).
http://dx.doi.org/10.1016/j.compscitech.2009.11.012
35.
35.P. Sharma, S. Ganti, and N. Bhate, Appl. Phys. Lett. 82, 535 (2003).
http://dx.doi.org/10.1063/1.1539929
36.
36.R. E. Miller and V. B. Shenoy, Nanotech. 11, 139 (2000).
http://dx.doi.org/10.1088/0957-4484/11/3/301
37.
37.S. Timoshenko and J. Goodier, Theory of Elasticity, 3rd ed. (McGrawHill, New York, 1970).
38.
38.L. G. Zhou and H. C. Huang, Appl. Phys. Lett. 84, 1940 (2004).
http://dx.doi.org/10.1063/1.1682698
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4945441
Loading
/content/aip/journal/adva/6/3/10.1063/1.4945441
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4945441
2016-03-31
2016-12-04

Abstract

Gas and liquid adsorption-induced deformation of ordered porous materials is an important physical phenomenon with a wide range of applications. In general, the deformation can be characterized by the pore-load modulus and, when the pore size reduces to nanoscale, it is affected by surface effects and shows prominent size-dependent features. In this Letter, the influence of surface effects on the elastic properties of ordered nanoporous materials with internal pressure is accounted for in a single pore model. A porosity and surface elastic constants dependent closed form solution for the size dependent pore-load modulus is obtained and verified by finite element simulations and available experimental results. In addition, it is found to depend on the geometrical arrangement of pores. This study provides an efficient tool to analyze the surface effects on the elastic response of ordered nanoporous materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4945441.html;jsessionid=l6fIT5UqX3gAsvBCdtJ7CxuD.x-aip-live-02?itemId=/content/aip/journal/adva/6/3/10.1063/1.4945441&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4945441&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4945441'
Right1,Right2,Right3,