Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/3/10.1063/1.4945442
1.
1.B. Julsgaard et al., Nature 432, 482 (2004).
http://dx.doi.org/10.1038/nature03064
2.
2.C.P. Sun, Y. Li, and X.F. Liu, Phys. Rev. Lett. 91, 147903 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.147903
3.
3.B. Kraus et al., Phys. Rev. A 73, 020302 (2006);
http://dx.doi.org/10.1103/PhysRevA.73.020302
3.S. A. Moiseev and S. Kroll, Phys. Rev. Lett. 87, 173601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.173601
4.
4.D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, and M.D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.783
5.
5.A. Lezama, A.M. Akulshin, A. I. Sidorov, and P. Hannaford, Phys. Rev. A 73, 033806 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.033806
6.
6.U. Schnorrberger, J.D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, Phys. Rev. Lett. 103, 033003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.033003
7.
7.J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A.I. Lvovsky, Phys. Rev. Lett. 100, 093602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.093602
8.
8.A. Raczynski, J. Zaremba, and S. Zielinska-Kaniasty, Phys. Rev. A 69, 043801 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.043801
9.
9.T. N. Dey and G.S. Agarwal, Phys. Rev. A 67, 033813 (2003).
http://dx.doi.org/10.1103/PhysRevA.67.033813
10.
10.M.G. Payne and L. Deng, Phys. Rev. Lett. 91, 123602 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.123602
11.
11.Y. Wu and L. Deng, Opt. Lett. 29, 1144 (2004).
http://dx.doi.org/10.1364/OL.29.001144
12.
12.Y. Wu Y, M.G. Payne, E.W. Hagley, and L. Deng, Phys. Rev. A 69, 063803 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.063803
13.
13.D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G.C. La Rocca, and M. Artoni, Phys. Rev. A 86, 053827 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.053827
14.
14.J. Liu, A. Zheng, N. Liu, C.J. Shan, and H. Li, Europhy. Lett. 104, 34006 (2013).
http://dx.doi.org/10.1209/0295-5075/104/34006
15.
15.C.-H. Yuan, C.-P. Lu, W. Zhang, and L. Deng, Phys. Rev. A 79, 033804 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.033804
16.
16.L. Deng, M.G. Payne, G.X. Huang, and E.W. Hagley, Phys. Rev. E 72, 055601(R) (2005).
http://dx.doi.org/10.1103/PhysRevE.72.055601
17.
17.Y. Wu, M.G. Payne, E.W. Hagley, and L. Deng, Phys. Rev. A 70, 063812 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.063812
18.
18.J Li, R Yu, L Si, and X Yang, Opt. Commun. 282, 2437 (2009).
http://dx.doi.org/10.1016/j.optcom.2009.02.066
19.
19.I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Srensen, M. D. Lukin, and R. L. Walsworth, Phys. Rev. Lett. 98, 243602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.243602
20.
20.Y.-W. Lin, W.-T Liao, T. Peters et al., Phys. Rev. Lett. 102, 213601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.213601
21.
21.Y Wu, J Saldana, and Y Zhu, Phys. Rev. A 67, 013811 (2003).
http://dx.doi.org/10.1103/PhysRevA.67.013811
22.
22.Y. Li and M. Xiao, Opt. Lett. 21, 1064 (1996).
http://dx.doi.org/10.1364/OL.21.001064
23.
23.Y. Zhang, A.W. Brown, and M. Xiao, Phys. Rev. Lett 99, 123603 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.123603
24.
24.Y Wu and X Yang, Phys. Rev. A 71, 053806 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.053806
25.
25.S Liu, W-X Yang, Y-L Chuang, A-X Chen, A Liu, Y Huang, and R-K Lee, Opt. Express 22, 29179 (2014).
http://dx.doi.org/10.1364/OE.22.029179
26.
26.W-X Yang, J-M Hou, and R-K Lee, J. Modern Optics 56, 716 (2009).
http://dx.doi.org/10.1080/09500340802155404
27.
27.Y Wu and L Deng, Phys. Rev. Lett. 93, 143904 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.143904
28.
28.Y Wu and X Yang, Phys. Rev. A 70, 053818 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.053818
29.
29.M.D. Lukin, A.B. Matsko, M. Fleischhauer, and M.O. Scully, Phys. Rev. Lett. 82, 1847 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1847
30.
30.Y.P. Zhang, A.W. Brown, and M. Xiao, Phys. Rev. Lett. 99, 123603 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.123603
31.
31.Y. Wu and X. Yang, Phys. Rev. A 70, 053818 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.053818
32.
32.H. Kang and Y. Zhu, Phys. Rev. Lett. 91, 093601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.093601
33.
33.M.G. Payne and L. Deng, Phys. Rev. A 65, 063806 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.063806
34.
34.A Zheng, G Zhang, L Gui, and J Liu, Laser Physics 25, 065201 (2015).
http://dx.doi.org/10.1088/1054-660X/25/6/065201
35.
35.A Zheng, X L, and J Liu, J. PHYS. B 47, 055501 (2014).
http://dx.doi.org/10.1088/0953-4075/47/5/055501
36.
36.M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, Phys. Rev. Lett 91, 183602 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.183602
37.
37.W.-X. Yang, J.-M. Houand, and R.-K. Lee, Phys. Rev. A 77, 033838 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.033838
38.
38.J.-H. Li, Phys. Rev. B 75, 155329 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155329
39.
39.Y. Niu, S. Jin, R. Li, and Z. Xu, Phys. Rev. B 74, 155314 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.193403
40.
40.X. Yang, Z. Li, and Y. Wu, Phys. Lett. A 340, 320 (2005).
http://dx.doi.org/10.1016/j.physleta.2005.04.019
41.
41.S. Crankshaw, F. G. Sedgwick, M. Moewe, C. Chang- Hasnain, H. Wang, and S. L. Chuang, Phys. Rev. Lett. 102, 206604 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.206604
42.
42.J.-B. Liu, N. Liu N, C.-J. Shan, T.-K. Liu, and Y.-X. Huang, Phys. Rev. E. 81, 036607 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.036607
43.
43.J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997).
http://dx.doi.org/10.1126/science.277.5330.1284
44.
44.S. W. Chang, H. L. Chuang, C. J. Chang-Hasnain, and H. Wang, J. Opt. Soc. Am. B 24, 849 (2007).
http://dx.doi.org/10.1364/JOSAB.24.000849
45.
45.W-X Yang, J-M Hou, and R-K Lee, Physical Review A 77, 033838 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.033838
46.
46.W-X Yang, S. Liu, Z. Zhu, Ziaduddin, and R-K Lee, Opt. Lett. 40, 3133 (2015).
http://dx.doi.org/10.1364/OL.40.003133
47.
47.W-X Yang, J-W Lu, Z-K Zhou, L Yang, and R-K Lee, J. Appl. Phys. 115, 203104 (2014).
http://dx.doi.org/10.1063/1.4879435
48.
48.P.I. Tamborenea and H. Metiu, J. Chem. Phys. 110, 9202 (1999).
http://dx.doi.org/10.1063/1.478843
49.
49.P. Kinsler, P. Harrison, and R. W. Kelsall, Journal of Applied Physics 85, 23 (1999).
http://dx.doi.org/10.1063/1.369435
50.
50.H. Schmidtetal, Appl.Phys.Lett. 70, 3455 (1997).
http://dx.doi.org/10.1063/1.119199
51.
51.J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, Phys. Rev. Lett. 94, 157403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.157403
52.
52.W.-X. Yang, J.-M. Hou, Y. Lin, and R.-K. Lee, Phys. Rev. A 79, 033825 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.033825
53.
53.M.D. Frogley, J.F. Dynes, M. Beck, J. Faist, and C.C. Phillips, Nature Mater. 5, 175 (2006).
http://dx.doi.org/10.1038/nmat1586
54.
54.J.H. Wu, J.Y. Gao, J.H. Xu, L. Silvestri, M. Artoni, G.C. La Rocca, and F. Bassani, Phys. Rev. Lett. 95, 057401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.057401
55.
55.J. Liu, T. Liu, H. Li, X-T. Xie, D. N. Wang, and R-K Lee, Europhy. Lett. 112, 56002 (2015).
http://dx.doi.org/10.1209/0295-5075/112/56002
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/3/10.1063/1.4945442
Loading
/content/aip/journal/adva/6/3/10.1063/1.4945442
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/3/10.1063/1.4945442
2016-03-31
2016-12-08

Abstract

In this paper, we propose an effective scheme to create a frequency entangled states based on bound-to-bound inter-subband transitions in an asymmetric three-coupled quantum well structure. A four-subband cascade configuration quantum well structure is illuminated with a pulsed probe field and two continuous wave control laser fields to generate a mixing field. By properly adjusting the frequency detunings and the intensity of coupling fields, the conversion efficiency can reach 100%. A maximum entangled state can be achieved by selecting a proper length of the sample. We also numerically investigate the propagation dynamics of the probe pulse and mixing pulse, the results show that two frequency components are able to exchange energy through a four-wave mixing process. Moreover, by considering special coupling fields, the storage and retrieval of the probe pulse is also numerically simulated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/3/1.4945442.html;jsessionid=YYBsSU_TCxhLe5w8b--FnVK6.x-aip-live-03?itemId=/content/aip/journal/adva/6/3/10.1063/1.4945442&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/3/10.1063/1.4945442&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/3/10.1063/1.4945442'
Right1,Right2,Right3,