Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4945752
1.
1.H.F. Tiersten and T.-L. Sham, IEEE Trans. Ultras. Ferroelectr. Freq. Contr. 45, 1 (1998).
http://dx.doi.org/10.1109/58.646895
2.
2.Y-K. Yong, M.S. Patel, and M. Tanaka, IEEE Trans. Ultras. Ferroelectr. Freq. Contr. 57, 1831 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1622
3.
3.P.C.Y. Lee, N.H. Liu, and A. Ballato, Trans. Ultras. Ferroelectr. Freq. Contr. 51, 52 (2004).
http://dx.doi.org/10.1109/TUFFC.2004.1268467
4.
4.J. Wang, W.H. Zhao, J.K. Du, and Y.T. Hu, Ultrasonics 51, 65 (2011).
http://dx.doi.org/10.1016/j.ultras.2010.05.009
5.
5.B.A. Auld, Acoustic Fields and Waves in Solids (John Wiley and Sons, New York, 1973), Vol. I.
6.
6.D.L. White, J. Appl. Phys. 33, 2547 (1962).
http://dx.doi.org/10.1063/1.1729015
7.
7.J.S. Yang and H.G. Zhou, Acta Mechanica 172, 113 (2004).
http://dx.doi.org/10.1007/s00707-004-0140-z
8.
8.S.K. Ghosh, Indian J. Pure Appl. Phys. 44, 183 (2006).
9.
9.M. Willatzen and J. Christensen, Phys. Rev. B 89, 041201 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.041201
10.
10.F.J.R. Schulein, K. Muller, M. Bichler et al., Phys. Rev. B 88, 085307 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085307
11.
11.S. Buyukkose, A. Hernandez-Minguez, B. Vratzov et al., Nanotech. 25, 135204 (2014).
http://dx.doi.org/10.1088/0957-4484/25/13/135204
12.
12.X.D. Wang, J. Zhou, J.H. Song et al., Nano Lett. 6, 2768 (2006).
http://dx.doi.org/10.1021/nl061802g
13.
13.Z.L. Wang, Adv. Mater. 19, 889 (2007).
http://dx.doi.org/10.1002/adma.200602918
14.
14.Z.L. Wang, Nano Today 5, 540 (2010).
http://dx.doi.org/10.1016/j.nantod.2010.10.008
15.
15.O. Graton, G. Poulin-Vittrant, L.T.H. Hue et al., Adv. Appl. Ceram. 112, 85 (2013).
http://dx.doi.org/10.1179/1743676112Y.0000000029
16.
16.K. Yin, H.Y. Lin, Q. Cai et al., Nanoscale 5, 12330 (2013).
http://dx.doi.org/10.1039/c3nr03838f
17.
17.P. Hiralal, H.E. Unalan, and G.A. Amaratunga, Nanotech. 23, 194002 (2012).
http://dx.doi.org/10.1088/0957-4484/23/19/194002
18.
18.B. Kumar and S.-W. Kim, Nano Energy 1, 342 (2012).
http://dx.doi.org/10.1016/j.nanoen.2012.02.001
19.
19.A.R. Hutson and D.L. White, J. Appl. Phys. 33, 40 (1962).
http://dx.doi.org/10.1063/1.1728525
20.
20.J.S. Yang, Y.C. Song, and A.K. Soh, Arch. Appl. Mech. 76, 381 (2006).
http://dx.doi.org/10.1007/s00419-006-0035-7
21.
21.Y.T. Hu, Y. Zeng, and J.S. Yang, Int. J. Solids Struct. 44, 3928 (2007).
http://dx.doi.org/10.1016/j.ijsolstr.2006.10.033
22.
22.J. Sladek, V. Sladek, E. Pan et al., CMES 99, 273 (2014).
23.
23.J. Sladek, V. Sladek, E. Pan et al., Eng. Fract. Mech. 126, 27 (2014).
http://dx.doi.org/10.1016/j.engfracmech.2014.05.011
24.
24.P. Li, F. Jin, and J.S. Yang, Smart Mater. Struct. 24, 025021 (2015).
http://dx.doi.org/10.1088/0964-1726/24/2/025021
25.
25.J. Wauer and S. Suherman, Int. J. Eng. Sci. 35, 1387 (1997).
http://dx.doi.org/10.1016/S0020-7225(97)00060-8
26.
26.J.S. Yang and H.G. Zhou, Int. J. Solids Struct. 42, 3171 (2005).
http://dx.doi.org/10.1016/j.ijsolstr.2004.10.011
27.
27.J.S. Yang, X.M. Yang, and J.A. Turner, J. Intellig. Mater. Syst. Struct. 16, 613 (2005).
http://dx.doi.org/10.1177/1045389X05051626
28.
28.H.G. de Lorenzi and H.F. Tiersten, J. Math. Phys. 16, 938 (1975).
http://dx.doi.org/10.1063/1.522600
29.
29.M.F. McCarthy and H.F. Tiersten, Arch. Rat. Mech. Anal. 68, 27 (1978).
http://dx.doi.org/10.1007/BF00276177
30.
30.G. Maugin and N. Daher, Int. J. Eng. Sci. 24, 703 (1986).
http://dx.doi.org/10.1016/0020-7225(86)90106-0
31.
31.R.F. Pierret, Semiconductor Fundamentals, 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1988).
32.
32.C.L. Zhang, X.Y. Wang, W.Q. Chen, and J.S. Yang, J. Zhejiang Univ. – SCI. A 17, 37 (2016).
http://dx.doi.org/10.1631/jzus.A1500213
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4945752
Loading
/content/aip/journal/adva/6/4/10.1063/1.4945752
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4945752
2016-04-05
2016-09-25

Abstract

We studied the propagation of extensional waves in a thin piezoelectricsemiconductor rod of ZnO whose -axis is along the axis of the rod. The macroscopic theory of piezoelectricsemiconductors was used which consists of the coupled equations of piezoelectricity and the conservation of charge. The problem is nonlinear because the drift current is the product of the unknown electric field and the unknown carrier density. A perturbation procedure was used which resulted in two one-way coupled linear problems of piezoelectricity and the conservation of charge, respectively. The acoustic wave and the accompanying electric field were obtained from the equations of piezoelectricity. The motion of carriers was then determined from the conservation of charge using a trigonometric series. It was found that while the acoustic wave was approximated by a sinusoidal wave, the motion of carriers deviates from a sinusoidal wave qualitatively because of the contributions of higher harmonics arising from the originally nonlinear terms. The wave crests become higher and sharper while the troughs are shallower and wider. This deviation is more pronounced for acoustic waves with larger amplitudes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4945752.html;jsessionid=XCn3lTfJBIpRg0YLA0ENXAo-.x-aip-live-06?itemId=/content/aip/journal/adva/6/4/10.1063/1.4945752&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4945752&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4945752'
Right1,Right2,Right3,