Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4945758
1.
1.A. Räuber, in Current Topics in Material Science, edited by E. Kaldis (North-Holland, Amsterdam, 1987), Vol. 1, pp. 481-601.
2.
2.F. Agulló-López and J.M. Cabrera, Properties of Lithium Niobate, EMIS Data Reviews Series Vol. 5 (INSPEC, London, 1989), pp. 8-17.
3.
3.F.S. Chen, J.T. Lamacchia, and D.B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
http://dx.doi.org/10.1063/1.1652580
4.
4.I.P. Kaminow and J.R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).
http://dx.doi.org/10.1063/1.1654657
5.
5.D.H. Auston, A.M. Glass, and A.A. Ballman, Phys. Rev. Lett. 28, 897 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.897
6.
6.L.F. Johnson and A.A. Ballman, J. Appl. Phys. 40, 297 (1969).
http://dx.doi.org/10.1063/1.1657047
7.
7.R.S. Weis and T.K. Gaylord, Appl. Phys. A 37, 191 (1985).
http://dx.doi.org/10.1007/BF00614817
8.
8.D.L. Staebler, W.J. Burke, W. Phillips, and J.J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
http://dx.doi.org/10.1063/1.88108
9.
9.N.F. Evlanova, A.S. Kovalev, V.A. Koptsik, L.S. Kornienko, A.M. Prokhorov, and R.N. Rashkovich, JEPT Lett. 5, 291 (1967).
10.
10.G.G. Zhong, J. Jin, and Z.K. Wu, in Proc. 11th Int’l Quantum Electronics Conf. IEEE Cat. No. 80 CH1561-0 (1980), p. 631.
11.
11.D.A. Bryan, R. Gerson, and H.E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).
http://dx.doi.org/10.1063/1.94946
12.
12.J.K. Wen, L. Wang, and H.F. Wang, Appl. Phys. Lett. 53, 260 (1988).
http://dx.doi.org/10.1063/1.100591
13.
13.M.D. Glinchuk, G.I. Malovichko, I.P. Bykov, and V.G. Grachev, Ferroelectrics 92, 477 (1989).
http://dx.doi.org/10.1080/00150198908211311
14.
14.C.R.A. Catlow, A.V. Chadwick, M. Cole, and S.M. Tomlinson, Radiat. Eff. Defects Solids 119, 565 (1991).
http://dx.doi.org/10.1080/10420159108220781
15.
15.C. Prieto and C. Zaldo, Solid State Commun. 83, 819 (1992).
http://dx.doi.org/10.1016/0038-1098(92)90034-7
16.
16.H. Söthe and J.M. Spaeth, J. Phys.: Condens. Matter 4, 9901 (1992).
http://dx.doi.org/10.1088/0953-8984/4/49/017
17.
17.I.W. Park, S.H. Choh, K.J. Song, T.H. Yeom, and C. Rudowicz, J. Korean Phys. Soc. 26, 168 (1993).
18.
18.G.I. Malovichko, V.G. Grachev, O.F. Schirmer, and B. Faust, J. Phys.: Condens. Matter 5, 3971 (1993).
http://dx.doi.org/10.1088/0953-8984/5/23/024
19.
19.T.H. Yeom, S.H. Choh, Y.M. Chang, and C. Rudowicz, Phys. Stat. Sol. (b) 185, 409 (1994).
http://dx.doi.org/10.1002/pssb.2221850211
20.
20.G.I. Malovichko and V.G. Grachev, Soviet Phys. - Solid State 27, 1678 (1985).
21.
21.S.H. Choh, E.K. Kim, S.S. Park, and J.N. Kim, Chin. J. Phys. 23, 193 (1985).
22.
22.G.I. Malovichko, G. Grachev, and S.N. Lukin, Soviet Phys. - Solid State 28, 553 (1986).
23.
23.M.D. Glinchuk, G.I. Malovichko, I.P. Bykov, and V.G. Grachev, Ferroelectrics 92, 477 (1989).
http://dx.doi.org/10.1080/00150198908211311
24.
24.M.P. Petrov, Soviet Phys. - Solid State 10, 2574 (1969).
25.
25.H. Feng, J. Wen, J. Wang, S. Han, and Y. Xu, J. Phys. Chem. Solids 51, 397 (1990).
http://dx.doi.org/10.1016/0022-3697(90)90173-D
26.
26.A. Böker, H. Donnerberg, O.F. Schirmer, and X. Feng, J. Phys.: Condens. Matter 2, 6865 (1990).
http://dx.doi.org/10.1088/0953-8984/2/32/017
27.
27.S.C. Abrahams, S.C. Hhamilton, and J.M. Reddy, J. Phys. Chem. Solids 27, 1019 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90074-6
28.
28.S.C. Abrahams and P. Marsh, Acta Cryst. B 48, 61 (1986).
http://dx.doi.org/10.1107/S0108768186098567
29.
29.R. Gerson, J.F. Kirchho, L.E. Halliburton, and D.A. Bryan, J. Appl. Phys. 60, 3553 (1986).
http://dx.doi.org/10.1063/1.337611
30.
30.K.L. Sweeney, L.E. Halliburton, D.A. Bryan, R.R. Rice, R. Gerson, and H.E. Tomaschke, J. Appl. Phys. 57, 1036 (1985).
http://dx.doi.org/10.1063/1.334544
31.
31.G.E. Peterson, P.M. Bridenbaugh, and P. Green, J. Chem. Phys. 46, 4009 (1967).
http://dx.doi.org/10.1063/1.1840478
32.
32.T.K. Halstead, J. Chem. Phys. 53, 3427 (1970).
http://dx.doi.org/10.1063/1.1674513
33.
33.G.E. Peterson and P.M. Bridenbaugh, J. Chem. Phys. 48, 3402 (1968).
http://dx.doi.org/10.1063/1.1669633
34.
34.E. Schempp and G.E. Peterson, J. Chem. Phys. 53, 306 (1970).
http://dx.doi.org/10.1063/1.1673781
35.
35.L. Baiqin, W. Yening, and X. Ziran, J. Phys. C: Solid State Phys. 21, L251 (1988).
http://dx.doi.org/10.1088/0022-3719/21/9/001
36.
36.E.K. Kim, M. Sc. Thesis, Korea University, 1983.
37.
37.D. Bork and P. Heitjans, J. Phys. Chem. B 102, 7303 (1998).
http://dx.doi.org/10.1021/jp981536y
38.
38.D. Bork and P. Heitjans, J. Phys. Chem. B 105, 9162 (2001).
http://dx.doi.org/10.1021/jp012409w
39.
39.M. Wilkening, D. Bork, S. Indris, and P. Heitjans, Phys. Chem. Chem. Phys. 4, 3246 (2002).
http://dx.doi.org/10.1039/b201193j
40.
40.T.H. Yeom, A.R. Lim, and I. Noiret, Phys. Stst. Sol. (b) 245, 2821 (2008).
http://dx.doi.org/10.1002/pssb.200844166
41.
41.S.C. Abrahams, J.M. Reddy, and J.L. Bernstein, J. Phys. Chem. Solids 27, 997 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90072-2
42.
42.S.C. Abrahams, W.C. Hamilton, and J.M. Reddy, J. Phys. Chem. Solids 27, 1013 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90073-4
43.
43.A.R. Lim and H.K. Shin, J. Appl. Phys. 107, 63513 (2010).
http://dx.doi.org/10.1063/1.3331816
44.
44.M. Igarashi, H. Kitagawa, S. Takahashi, R. Yoshizak, Y. Abe, and Z. Naturforsch, A. Phys. Sci. 47, 313 (1992).
45.
45.A.R. Lim, H.H. Kim, and M. Lee, J. Solid State Chem. 199, 96 (2013).
http://dx.doi.org/10.1016/j.jssc.2012.11.030
46.
46.A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
47.
47.M.P. Petrov, Sov. Phys. Solid State 10, 2574 (1969).
48.
48.T.H. Yeom, S.H. Choh, and K.S. Hong, J. Korean Phys. Soc. 25, 62 (1992).
49.
49.I. Noiret, J. Schamps, and A.R. Lim, Optical Materials 34, 465 (2011).
http://dx.doi.org/10.1016/j.optmat.2011.04.023
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4945758
Loading
/content/aip/journal/adva/6/4/10.1063/1.4945758
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4945758
2016-04-05
2016-12-11

Abstract

In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO, LiNbO:Mg, LiNbO:Mg/Ti, LiNbO:Mg/Fe, and LiNbO:Mg/Fe (thermally treated at 500°C) single crystals. The results for the LiNbO:Mg single crystalsdoped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO:Mg/Fe single crystals were examined based on the T analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4945758.html;jsessionid=ygeLnzkF1hjjT5OEjE9VndrI.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4945758&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4945758&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4945758'
Right1,Right2,Right3,