Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4945761
1.
1.L. G. Xu, W. Ma, L. B. Wang, C. L. Xu, H. Kuang, H., and N. A. Kotov, Chem. Soc. Rev. 42, 3114 (2013).
http://dx.doi.org/10.1039/c3cs35460a
2.
2.Y. Liang, P. Liu, P., and G. W. Yang, Cryst. Growth Des. 14, 5847 (2014).
http://dx.doi.org/10.1021/cg501079a
3.
3.Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, Science 291, 630 (2001).
http://dx.doi.org/10.1126/science.291.5504.630
4.
4.Y. Zhou, M. Kogiso, and T. Shimizu, J. Am. Chem. Soc. 131, 2456 (2009).
http://dx.doi.org/10.1021/ja809728c
5.
5.Z. Y. Tang and N. A. Kotov, Adv. Mater. 17, 951 (2005).
http://dx.doi.org/10.1002/adma.200401593
6.
6.J. C. Jia, J. C. Yu, Y. X. J. Wang, and K. M. Chan, ACS Appl. Mater. Inter. 2, 2579 (2010).
http://dx.doi.org/10.1021/am100410r
7.
7.L. Q. Dong, T. Hollis, B. A. Connolly, N. G. Wright, B. R. Horrocks, and A. Houlton, Adv. Mater. 19, 1748 (2007).
http://dx.doi.org/10.1002/adma.200602543
8.
8.M. Grzelczak, J. Vermant, E. M. Furst, E. M., and L. M. Liz-Marzan, ACS Nano 4, 3591 (2010).
http://dx.doi.org/10.1021/nn100869j
9.
9.R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, Science 334, 204 (2011).
http://dx.doi.org/10.1126/science.1210493
10.
10.A. G. Pershina, A. E. Sazonov, and V. D. Filimonov, Russ. Chem. Rev. 83, 299 (2014).
http://dx.doi.org/10.1070/RC2014v083n04ABEH004412
11.
11.M. Banchelli, S. Nappini, C. Montis, M. Bonini, P. Canton, D. Berti, and P. Baglioni, Phys. Chem. Chem. Phys. 16, 10023 (2014).
http://dx.doi.org/10.1039/c3cp55470h
12.
12.J. I. Cutler, D. Zheng, X. Xu, D. A. Giljohann, and C.A. Mirkin, Nano Lett. 10, 1477 (2010).
http://dx.doi.org/10.1021/nl100477m
13.
13.J. I. Cutler, E. Auyeung, and C. A. Mirkin, J. Am. Chem. Soc. 134, 1376 (2012).
http://dx.doi.org/10.1021/ja209351u
14.
14.I. Robinson, D. Tung le, S. Maenosono, C. Walti, and N. T. Thanh, Nanoscale 2, 2624 (2010).
http://dx.doi.org/10.1039/c0nr00621a
15.
15.M. Pita, J. M. Abad, C. Vaz-Dominguez, C. Briones, E. Mateo-Marti, J.A. Martin-Gago, P. Morales Mdel, and V. M. Fernandez, J. Colloid Interface Sci. 321, 484 (2008).
http://dx.doi.org/10.1016/j.jcis.2008.02.010
16.
16.N. Kitamura, R. Nakai, H. Kohda, K. Furuta-Okamoto, and H. Iwata, Bioorgan. Med. Chem. 21, 7175 (2013).
http://dx.doi.org/10.1016/j.bmc.2013.08.063
17.
17.H. Shen, Y. Wang, H. Yang, and J. Jiang, Chin. Sci. Bull. 48, 2698 (2003).
http://dx.doi.org/10.1007/BF02901759
18.
18.F. Wang, H. Shen, J. Feng, and H. Yang, Microchim. Acta 153, 15 (2006).
http://dx.doi.org/10.1007/s00604-005-0460-2
19.
19.S. Santra, R. Yapec, N. Theodoropoulou, J. Dobson, A. Hebard, and W. Tan, Langmuir 17, 2900 (2001).
http://dx.doi.org/10.1021/la0008636
20.
20.N. Zhu, A. Zhang, P. He, and Y. Fang, Electroanalysis 16, 1925 (2004).
http://dx.doi.org/10.1002/elan.200303028
21.
21.C. D. Medley, J. E. Smith, I. Wigman, and N. P. Chetwyn, Anal. Bioanal. Chem. 404, 2233 (2012).
22.
22.K. Wagner, A. Kautz, M. Röder, M. Schwalbe, K. Pachmann, J. H. Clement, and M. Schnabelrauch, Appl. Organomet. Chem. 18, 514 (2004).
http://dx.doi.org/10.1002/aoc.752
23.
23.X. Zhu, X. Zhou, and D. Xing, Biosens. Bioelectron. 31, 463 (2012).
http://dx.doi.org/10.1016/j.bios.2011.11.016
24.
24.D. B. Robinson, H. H. Persson, H. Zeng, G. Li, N. Pourmand, S. Sun, and S. X. Wang, Langmuir 21, 3096 (2005).
http://dx.doi.org/10.1021/la047206o
25.
25.M. Yin, Z. Li, Z. Liu, J. Ren, X. Yang, and X. Qu, Chem. Commun. 48, 6556 (2012).
http://dx.doi.org/10.1039/c2cc32129g
26.
26.M. Fuentes, C. Mateo, A. Rodriguez, M. Casqueiro, J. C. Tercero, H. H. Riese, R. Fernandez-Lafuente, and J. M. Guisan, Biosens. Bioelectron. 21, 1574 (2006).
http://dx.doi.org/10.1016/j.bios.2005.07.017
27.
27.G. Amagliani, E. Omiccioli, A. Campo, I. J. Bruce, G. Brandi, and M. Magnani, J. Appl. Microbiol. 100, 375 (2006).
http://dx.doi.org/10.1111/j.1365-2672.2005.02761.x
28.
28.J. Y. Lin and Y. C. Chen, Talanta 86, 200 (2011).
http://dx.doi.org/10.1016/j.talanta.2011.08.061
29.
29.A. del Campo, T. Sena, J.-P. Lellouchec, and I. J. Brucea, J. Magn. Magn. Mater. 293, 33 (2005).
http://dx.doi.org/10.1016/j.jmmm.2005.01.040
30.
30.L. B. Nie, X. L. Wang, S. Li, and H. Chen, Anal. Sci. 25, 1327 (2009).
http://dx.doi.org/10.2116/analsci.25.1327
31.
31.L. Josephson, J. M. Perez, and R. Weissleder, Angew. Chem., Int. Ed. 40, 3204 (2001).
http://dx.doi.org/10.1002/1521-3773(20010903)40:17<3204::AID-ANIE3204>3.0.CO;2-H
32.
32.M. V. Yigit, D. Mazumdar, H. K. Kim, J. H. Lee, B. Odintsov, and Y. Lu, ChemBioChem. 8, 1675 (2007).
http://dx.doi.org/10.1002/cbic.200700323
33.
33.J. Grimm, J. M. Perez, L. Josephson, and R. Weissleder, Cancer Res. 64, 639 (2004).
http://dx.doi.org/10.1158/0008-5472.CAN-03-2798
34.
34.F. W. Osterberg, G. Rizzi, T. Zardan Gomez de la Torre, M. Stromberg, M. Stromme, P. Svedlindh, and M. F. Hansen, Biosens. Bioelectron. 40, 147 (2013).
http://dx.doi.org/10.1016/j.bios.2012.07.002
35.
35.S. Y. Park, A. K. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, Nature 451, 553 (2008).
http://dx.doi.org/10.1038/nature06508
36.
36.M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi, and C. A. Mirkin, Nat. Mater. 9, 913 (2010).
http://dx.doi.org/10.1038/nmat2870
37.
37.F. Lu, K. G. Yager, Y. Zhang, H. Xin, and O. Gang, Nature Comm. 6, 6912 (2015).
http://dx.doi.org/10.1038/ncomms7912
38.
38.D. A. Thomson, E. H. Tee, N. T. Tran, M. J. Monteiro, and M. A. Cooper, Biomacromolecules 13, 1981 (2012).
http://dx.doi.org/10.1021/bm300717f
39.
39.C. Kaittanis, H. Boukhriss, S. Santra, S. A. Naser, and J. M. Perez, PLoS ONE 7, e35326 (2012).
http://dx.doi.org/10.1371/journal.pone.0035326
40.
40.N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
http://dx.doi.org/10.1126/science.1113357
41.
41.C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
http://dx.doi.org/10.1063/1.2836410
42.
42.N. A. Spaldin, S. W. Cheong, and R. Ramesh, Physics Today 63, 38 (2010).
http://dx.doi.org/10.1063/1.3502547
43.
43.G. Srinivasan, Ann. Rev. Mater. Res. 40, 153 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104459
44.
44.C. A. F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Adv. Mater. 22, 2900 (2010).
http://dx.doi.org/10.1002/adma.200904326
45.
45.D.A. Burdin, D.V. Chashin, N. A. Ekonomv, and Y. K. Fetisov, J. Magn. Magn. Meter. 406, 217 (2016).
http://dx.doi.org/10.1016/j.jmmm.2015.12.078
46.
46.G. Lawes and G. Srinivasan, J. Phys.D: Appl. Phys. 44, 243001 (2011).
http://dx.doi.org/10.1088/0022-3727/44/24/243001
47.
47.J. Ma, J. Hu, Z. Li, and C. W. Nan, Adv. Mater. 23, 1062-1087 (2011).
http://dx.doi.org/10.1002/adma.201003636
48.
48.J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland, J. Am. Ceram. Soc. 91, 351 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02259.x
49.
49.W. Zhang, R. Ramesh, J. L. MacManus-Driscoll, and H. Wang, MRS Bulletin 40, 736 (2015).
http://dx.doi.org/10.1557/mrs.2015.198
50.
50.Y. Zhou, D. Maurya, Y. Yan, G. Srinivasan, E. Quandt, and S. Priya, Energy Harvesting and Systems. DOI: 10.1515/ehs-2015-0003,2015.
51.
51.Z. H. Hua, P. Yang, H. B. Huang, J. G. Wan, Z. Z. Yu, S. G. Yang, M. Lu, B. X. Gu, and Y. W. Du, Mater.Chem. Phys 107, 541 (2008).
http://dx.doi.org/10.1016/j.matchemphys.2007.08.023
52.
52.M. Liu, X. Li, H. Imrane, Y. J. Chen, T. Goodrich, Z. H. Cai, K. S. Ziemer, J. Y. Huang, and N. X. Sun, Appl.Phys.Lett. 90, 152501 (2007).
http://dx.doi.org/10.1063/1.2722043
53.
53.G. Sreenivasulu, Maksym Popov, Ru Zhang, K. Sharma, C. Janes, A. Mukundan, and G. Srinivasan, Appl. Phys. Lett. 104, 052910 (2014).
http://dx.doi.org/10.1063/1.4864113
54.
54.G. Evans, G.V. Duong, M.J. Ingleson, Z. Xu, J. T. Jones, Y. Z. Khimyak, and M. J. Rosseinsky, Advanced Functional Materials 20, 231 (2010).
http://dx.doi.org/10.1002/adfm.200901632
55.
55.G. Sreenivasulu, M. Popov, F. A. Chavez, S. L. Hamilton, P. R. Lehto, and G. Srinivasan, Appl. Phys. Lett. 104, 052901 (2014).
http://dx.doi.org/10.1063/1.4863690
56.
56.G. Sreenivasulu, V. M. Petrov, F.A. Chavez, and G. Srinivasan, Appl. Phys. Lett. 105, 072905 (2014).
http://dx.doi.org/10.1063/1.4893699
57.
57.M. Popov, G. Sreenivasulu, V. M. Petrov, F. A. Chavez, and G. Srinivasan, AIP Advances 4, 097117 (2014).
http://dx.doi.org/10.1063/1.4895591
58.
58.G. Srinivasan, M. Popov, G. Sreenivasulu, V. M. Petrov, and F. A. Chavez, J. Appl. Phys. 117, 17A309 (2015).
http://dx.doi.org/10.1063/1.4908305
59.
59.G. Srinivasan, G. Sreenivasulu, C. Benoit, V. M. Petrov, and F. A. Chavez, J. Appl. Phys. 117, 17B904 (2015).
http://dx.doi.org/10.1063/1.4913818
60.
60.Landolt-Bornstein; Numerical data and functional relationships in science and technology, Group III, Crystal and Solid State Physics, vol 4(b), Magnetic and Other Properties of Oxides, edited by K.-H. Hellwege and A. M. Springer (Springer-Verlag, New York, 1970).
61.
61.T. Karaki, K. Yan, and M. Adachi, Japanese Journal of Applied Physics 46, 7035 (2007).
http://dx.doi.org/10.1143/JJAP.46.7035
62.
62.J. B. Tracy and T. M. Crawford, MRS bulletin 38, 915 (2015).
http://dx.doi.org/10.1557/mrs.2013.233
63.
63.Yu Wang, Appl. Phys. Lett. 96, 232901 (2010).
http://dx.doi.org/10.1063/1.3446842
64.
64.G. Cheng, G. T. Fraser, and A. R. Hight Walker, Langmuir 21, 12055 (2005).
http://dx.doi.org/10.1021/la0506473
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4945761
Loading
/content/aip/journal/adva/6/4/10.1063/1.4945761
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4945761
2016-04-05
2016-09-30

Abstract

Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagneticnanoparticles, 600 nm BaTiO (BTO) and 200 nm NiFeO (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4945761.html;jsessionid=l52tODmqVjrp8oQl8M2ariWr.x-aip-live-03?itemId=/content/aip/journal/adva/6/4/10.1063/1.4945761&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4945761&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4945761'
Right1,Right2,Right3,