Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys 94, 27792808 (2003).
2.E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, J. Appl. Phys. 85, 916923 (1999).
3.K. S. A. Butcher and T. L. Tansley, Superlattices Microstruct. 38, 137 (2005).
4.V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto et al., Phys. Status Solidi B 230, R4R6 (2002).;2-Z
5.V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto et al., Phys. Status Solidi B 234, 787795 (2002).<787::AID-PSSB787>3.0.CO;2-H
6.S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 12371266 (1992).
7.O. Ambacher, J. Phys. D. Appl. Phys. 31, 26532710 (1998).
8.J. Kamimura, K. Kishino, and A. Kikuchi, J. Appl. Phys 117, 084314 (2015).
9.J. Sakaguchi, T. Araki, T. Fujishima, E. Matioli, T. Palacios, and Y. Nanishi, Jpn. J. Appl. Phys. 52, 08JD06 (2013).
10.J. J. Williams, T. L. Williamson, M. A. Hoffbauer, Y. Wei, N. N. Faleev, and C. Honsberg, Phys. Status Solidi C. 11, 577580 (2014).
11.T. Kehagias, G. P. Dimitrakopulos, A. O. Ajagunna, T. Koukoula, K. Tsagaraki, A. Adikimenakis, P. Komninou, and A. Georgakilas, J. Appl. Phys. 114, 163519 (2013).
12.G. R. Mutta, T. Brazzini, L. Méchin, B. Guillet, J.-M Routoure, J.-L. Doualan, J. Grandal, M. D. C. Sabido Siller, F. Calle, and P. Ruterana, Semicond. Sci. Technol 29, 095010 (2014).
13.Y. Nanishi, Y. Saito, and T. Yamaguchi, Japanese J. Appl. Physics 42, 25492559 (2003).
14.M. C. Johnson, S. L. Konsek, A. Zettl, and E. D. Bourret-Courchesne, J. Cryst. Growth 272, 400406 (2004).
15.M. Alevli, N. Gungor, S. Alkis, C. Ozgit-Akgun, I. Donmez, A. K. Okyay, S. Gamage, I. Senevirathna, N. Dietz, and N. Biyikli, Phys. Status Solidi C 12, 423429 (2015).
16.M. K. Indika Senevirathna, S. Gamage, R. Atalay, A. R. Acharya, A. G. Unil Perera, N. Dietz, M. Buegler, A. Hoffmann, L. Su, A. Melton et al., J. Vac. Sci. Technol. A 30, 031511 (2012).
17.M. Amirhoseiny, S. S. Ng, and Z. Hassan, Mater. Sci. Semicond. Process. 35, 216221 (2015).
18.T. Sasaoka, M. Mori, T. Miyazaki, and S. Adachi, J. Appl. Phys. 108, 063538 (2010).
19.M. Sparvoli, R. D. Mansano, and J. F. D. Chubaci, Phys. Status Solidi 210, 16061611 (2013).
20.M. V. S. Da Silva, D. G. F. David, I. Pepe, A. Ferreira da Silva, J. S. de Almeida, A. L. Gazoto, A. O. dos Santos, L. P. Cardoso, E. A. Meneses, D. L. Graybill et al., Thin Solid Films 520, 48484852 (2012).
21.K. S. A. Butcher, D. Alexandrov, P. Terziyska, V. Georgiev, D. Georgieva, and P. W. Binsted, Phys. Status Solidi A 209, 4144 (2012).
22.M. A. Hafez and H. E. Elsayed-Ali, J. Vac. Sci. Technol. A 27, 696699 (2009).
23.A. Haider, S. Kizir, C. Ozgit-Akgun, E. Goldenberg, S. A. Leghari, A. K. Okyay, and N. Biyikli, J. Mater. Chem. C 3, 96209630 (2015).
24.A. Haider, S. Kizir, C. Ozgit-Akgun, A. K. Okyay, and N. Biyikli, J. Vac. Sci. Technol. A 34, 01A123 (2016).
25.N. Nepal, N. A. Mahadik, L. O. Nyakiti, S. B. Qadri, M. J. Mehl, J. K. Hite, and C. R. Eddy, Cryst. Growth Des. 13, 14851490 (2013).
26.S.-Y. Kuo, W.-C. Chen, C.-N. Hsiao, and F.-I. Lai, J. Cryst. Growth 310, 49634967 (2008).
27.Y. Bu, L. Ma, and M. C. Lin, J. Vac. Sci. Technol. A 11, 29312937 (1993).
28.H. B. Profijt, S. E. Potts, M. C. M. Van De Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 29, 050801 (2011).
29.L. R. Puurunen, J. Appl. Phys. 97, 121301 (2005).
30.C. Ozgit-Akgun, E. Goldenberg, A. K. Okyay, and N. Biyikli, J. Mater. Chem. C 2, 21232136 (2014).
31.A. Haider, C. Ozgit-Akgun, F. Kayaci, A. K. Okyay, T. Uyar, and N. Biyikli, Apl Mater. 2, 096109 (2014).
32.A. Haider, C. Ozgit-Akgun, E. Goldenberg, A. K. Okyay, and N. Biyikli, J. Am. Ceram. Soc 97, 40524059 (2014).
33.C. Ozgit-Akgun, E. Goldenberg, S. Bolat, B. Tekcan, F. Kayaci, T. Uyar, A. K. Okyay, and N. Biyikli, Phys. Status Solidi C 12, 394398 (2015).
34.S. Kumar, L. Mo, M. Motlan, and T. L. Tansley, Jpn. J. Appl. Phys. 35, 22612265 (1996).
35.I. Bello, W. M. Lau, R. P. W. Lawson, and K. K. Foo, J. Vac. Sci. Technol. A 10, 16421646 (1992).
36.I. J. Lee and C. Yu, J. Korean Phys.Soc 49, 21762179 (2006).
37.V. Lebedev, V. Cimalla, J. Pezoldt, M. Himmerlich, S. Krischok, J. A. Schaefer, O. Ambacher, F. M. Morales, J. G. Lozano, and D. González, J. Appl. Phys 100, 094902 (2006).
38.C. F. Shih, N. C. Chen, and C. Y. Tseng, Thin Solid Films 516, 50165019 (2008).
39.M. A. Moram and M. E. Vickers, Reports Prog. Phys 72, 036502 (2009).
40.M. F. Wu, S. Q. Zhou, A. Vantomme, Y. Huang, H. Wang, and H. Yang, J. Vac. Sci. Technol. A 24, 275279 (2006).
41.L. F. Jiang, W. Z. Shen, H. F. Yang, H. Ogawa, and Q. X. Guo, Appl. Phys. A Mater. Sci. Process. 78, 8993 (2004).
42.V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold et al., Phys. Status Solidi B 229, R1R3 (2002).;2-O

Data & Media loading...


Article metrics loading...



In this work, we report on self-limiting growth of InN thin films at substrate temperatures as low as 200 °C by hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD). The precursors used in growth experiments were trimethylindium (TMI) and Nplasma. Process parameters including TMI pulse time, Nplasma exposure time, purge time, and deposition temperature have been optimized for self-limiting growth of InN with in ALD window. With the increase in exposure time of Nplasma from 40 s to 100 s at 200 °C, growth rate showed a significant decrease from 1.60 to 0.64 Å/cycle. At 200 °C, growth rate saturated as 0.64 Å/cycle for TMI dose starting from 0.07 s. Structural, optical, and morphological characterization of InN were carried out in detail. X-ray diffraction measurements revealed the hexagonal wurtzite crystalline structure of the grown InN films. Refractive index of the InN filmdeposited at 200 °C was found to be 2.66 at 650 nm. 48 nm-thick InN films exhibited relatively smooth surfaces with Rms surface roughness values of 0.98 nm, while the film density was extracted as 6.30 g/cm3. X-ray photoelectron spectroscopy(XPS) measurements depicted the peaks of indium, nitrogen, carbon, and oxygen on the film surface and quantitative information revealed that films are nearly stoichiometric with rather low impurity content. In3d and N1s high-resolution scans confirmed the presence of InN with peaks located at 443.5 and 396.8 eV, respectively. Transmission electron microscopy(TEM) and selected area electron diffraction (SAED) further confirmed the polycrystalline structure of InN thin films and elemental mapping revealed uniform distribution of indium and nitrogen along the scanned area of the InN film. Spectral absorption measurements exhibited an optical band edge around 1.9 eV. Our findings demonstrate that HCPA-ALD might be a promising technique to grow crystalline wurtzite InN thin films at low substrate temperatures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd