Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
2.M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Harz, T. Suteewong, and U. Wiesner, Nature 460, 1110 (2009).
3.T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. F. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, ACS Nano 9, 6297 (2015).
4.J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shan, J. Zhao, and R. P. Van Duyne, Nature Mater. 7, 442 (2008).
5.K. Sakai, K. Uomura, T. Yamamoto, and K. Sasaki, Science Rep. 5, 8431 (2015).
6.H. J. Lezec and T. Thio, Opt. Express 12, 3629 (2004).
7.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
8.Z. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
9.F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2015).
10.Q. Chao and P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).
11.W. Park, Laser Phys. Lett. 7, 93 (2010).
12.A. K. Azad and W. L. Zhang, Opt. Lett. 30, 2945 (2005).
13.D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, Opt. Express 16, 9222 (2008).
14.W. Cao, C. Y. Song, T. E. Lanier, R. Singh, J. F. Ohara, W. M. Dennis, Y. P. Zhao, and W. L. Zhang, Science Rep. 2013, 1766 (2013).
15.M. X. Qiu, S. C. Ruan, H. Su, C. D. Wang, M. Zhang, R. L. Wang, and H. W. Liang, Appl. Phys. Lett. 99, 151501 (2011).
16.W. L. Zhang, A. K. Azad, J. G. Han, J. Z. Xu, J. Chen, and X. C. Zhang, Phys. Rev. Lett. 98, 183901 (2007).
17.Q. R. Xing, S. X. Li, Z. Tian, D. Liang, N. Zhang, L. Y. Lang, L. Chai, and Q. Y. Wang, Appl. Phys. Lett. 89, 041107 (2006).
18.C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, Phys. Rev. B 85, 245407 (2012).
19.D. V. Kadygrob, N. M. Makarov, F. Perez-Rodriguez, T. M. Slipchenko, and V. A. Yampol’skii, New J. Phys. 15, 023040 (2013).
20.Y. Jimba, K. Takano, M. Hangyo, and H. Miyazaki, J. Opt. Soc. Am. B 30, 2476 (2013).
21.D. J. Park, J. T. Hong, J. K. Park, S. B. Choi, B. H. Son, F. Rotermund, S. Lee, K. J. Ahn, D. S. Kim, and Y. H. Ahn, Current Appl. Phys. 13, 753 (2013).
22.Y. Zhang, Y. K. Liu, and J. G. Han, Chinese Phys. B 23, 067301 (2014).
23.Y. H. Sun, K. Liu, Y. Han, Q. Q. Li, S. S. Fan, and K. L. Jiang, J. Phys. Chem. C 117, 23190 (2013).
24.J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, Ji. Y. Park, S. Lee, and Y. H. Ahn, J. Phys. Chem. Lett. 4, 3950 (2013).
25.T. D. Nguyen, S. Liu, M. D. Lima, S. Fang, R. H. Baughman, A. Nahata, and Z. V. Vardeny, Opt. Mat. Express 2, 782 (2012).
26.K. L. Jiang, Q. Q. Li, and S. S. Fan, Nature 419, 801 (2002).
27.K. Liu, Y. H. Sun, C. Feng, X. Feng, K. L. Jiang, Y. Zhao, and S. Fan, Nano Lett. 8, 700 (2008).
28.X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, Adv. Mater. 18, 1505 (2006).
29.S. Kumar, N. Kamaraju, B. Karthikeyan, M. Tondusson, E. Freysz, and A. K. Sood, J. Phys. Chen. C 114, 12446 (2010).
30.J. H. Kim, J. R. Kim, J. O. Lee, J. W. Park, H. M. So, N. Kim, K. Kang, K. H. Yoo, and J. J. Kim, Phsy. Rev. Lett. 90, 166403 (2003).
31.U. Fano, Phys. Rev. 124, 1866 (1961).
32.A. K. Azad, Y. Zhao, and W. Zhang, Appl. Phys. Lett. 86, 141102 (2005).
33.P. Y. Fan, Z. F. Yu, S. H. Fan, and M. L. Brongersma, Nature Mater. 13, 471 (2014).
34.S. H. Fan, W. Suh, and J. D. Joannopoulos, J. Opt. Soc. Am. A 20, 569 (2003).
35.H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).

Data & Media loading...


Article metrics loading...



Transmission spectra of terahertz waves through a two-dimensional array of asymmetric rectangular apertures on super-aligned multi-walled carbon nanotube films were obtained experimentally. In this way, the anisotropic transmission phenomena of carbon nanotube films were observed. For a terahertz wavepolarization parallel to the orientation of the carbon nanotubes and along the aperture short axis, sharp resonances were observed and the resonance frequencies coincided well with the surface plasmon polariton theory. In addition, the minima of the transmission spectra were in agreement with the location predicted by the theory of Wood’s anomalies. Furthermore, it was found that the resonance profiles through the carbon nanotube films could be well described by the Fano model.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd