Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. C. Tu, C. J. Tun, C. C. Chuo, B. C. Lee, C. E. Tsai, T. C. Wang, J. Chi, C. P. Lee, and G. C. Chi, Jpn. J. Appl. Phys. 43, L264 (2004).
2.S. Nakamura, Science 281, 956 (1998).
3.Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, Appl. Phys. Express 2, 082101 (2009).
4.M. D. McCluskey, L. T. Romano, B. S. Krusor, D. P. Bour, and N. M. Johnson, Appl. Phys. Lett. 72, 1730 (1998).
5.T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 36, L382 (1997).
6.J. Heikenfeld, M. Garter, D. S. Lee, R. Birkhahn, and A. J. Steckl, Appl. Phys. Lett. 75, 1189 (1999).
7.A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, Appl. Phys. Express 2, 071004 (2009).
8.Y. Fujiwara and V. Dierolf, Jpn. J. Appl. Phys. 53, 05FA13 (2014).
9.A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, Phys. Status Solidi A 207, 1397 (2010).
10.R. Wakamatsu, D. Timmerman, D. Lee, A. Koizumi, and Y. Fujiwara, J. Appl. Phys. 114, 043501 (2013).
11.D. Lee, A. Nishikawa, Y. Terai, and Y. Fujiwara, Appl. Phys. Lett. 100, 171904 (2012).
12.Y. Takagi, T. Suwa, H. Sekiguchi, H. Okada, and A. Wakahara, Appl. Phys. Lett. 99, 171905 (2011).
13.D. Lee, R. Wakamatsu, A. Koizumi, Y. Terai, and Y. Fujiwara, Jpn. J. Appl. Phys 52, 08JM01 (2013).
14.H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, Appl. Phys. Lett. 57, 2814 (1990).
15.K. Okamoto, I. Niki, A. Shvartser, and Y. Narukawa, Nat. Mater. 3, 601 (2004).
16.K. Tateishi, M. Funato, Y. Kawakami, K. Okamoto, and K. Tamada, Appl. Phys. Lett. 106, 121112 (2015).
17.B. Mitchell, D. Timmerman, J. Poplawsky, W. Zhu, D. Lee, R. Wakamatsu, J. Takatsu, M. Matsuda, W. Guo, K. Lorenz, E. Alves, A. Koizumi, V. Dierolf, and Y. Fujiwara, Sci Rep. Accepted(2016).
18.N. Nakada, H. Ishikawa, T. Egawa, and T. Jimbo, Jpn. J. Appl. Phys. 42, L144 (2003).
19.N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, Opt. Mater. 33, 1050 (2011).
20.R. Wakamatsu, D. Lee, A. Koizumi, V. Dierolf, and Y. Fujiwara, J. Appl. Phys. 114, 043501 (2013).
21.Y. Wang, H. Sugimoto, S. Inampudi, A. Capretti, M. Fujii, and L. D. Negro, Appl. Phys. Lett. 106, 241105 (2015).
22.C. P. Lindsey and G. D. Patterson, J. Chem. Phys. 73, 3348 (1980).
23.K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, Appl. Phys. Lett. 87, 071102 (2005).
24.P. T. Worthing, R. M. Amos, and W. L. Barnes, Phys. Rev. A 59, 865 (1999).
25.R. Wakamatsu, D. Lee, A. Koizumi, V. Dierolf, Y. Terai, and Y. Fujiwara, Jpn. J. Appl. Phys. 52, 08JM03 (2013).
26.M. C Downer, G. W. Burdick, and D. K. Sardar, J. Chem. Phys. 89(4), 1787 (1988).
27.I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, Appl. Phys. Lett. 96, 031908 (2010).
28.W.C. Chew, Waves and Fields in Inhomogeneous Media (Wiley-IEEE Press, 1999).
29.T. Kato, H. Susawa, M. Hirotani, T. Saka, Y. Ohashi, E. Shichi, and S. Shibata, J Cryst. Growth 107, 832 (1991).

Data & Media loading...


Article metrics loading...



We investigate resonantly excited photoluminescence from a Eu,O-codoped GaN layer embedded into a microcavity, consisting of an AlGaN/GaN distributed Bragg reflector and a Ag reflecting mirror. The microcavity is responsible for a 18.6-fold increase of the Eu emission intensity at ∼10K, and a 21-fold increase at room temperature. We systematically investigate the origin of this enhancement, and we conclude that it is due to the combination of several effects including, the lifetime shortening of the Eu emission, the strain-induced piezoelectric effect, and the increased extraction and excitation field efficiencies. This study paves the way for an alternative method to enhance the photoluminescence intensity in rare-earth doped semiconductor structures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd