Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4946850
1.
1.M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert, and I. Abram, Appl. Phys. Lett. 84, 648 (2004).
http://dx.doi.org/10.1063/1.1643533
2.
2.M. H. Baier, S. Watanabe, E. Pelucchi, and E. Kapon, Appl. Phys. Lett. 84, 1943 (2004).
http://dx.doi.org/10.1063/1.1682677
3.
3.R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, Nature 439, 179 (2006).
http://dx.doi.org/10.1038/nature04446
4.
4.D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Phys. Rev. Lett. 76, 3005 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3005
5.
5.M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, Phys. Rev. B. 65, 195315 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195315
6.
6.D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Science 273, 87 (1996).
http://dx.doi.org/10.1126/science.273.5271.87
7.
7.G. Bester, S. Nair, and A. Zunger, Phys. Rev. B. 67, 161306 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.161306
8.
8.P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.157401
9.
9.R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, New Journal of Physics 9, 315 (2007).
http://dx.doi.org/10.1088/1367-2630/9/9/315
10.
10.R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, Phys. Rev. B. 72, 113305 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.113305
11.
11.A. J. Bennett, M. A. Pooley, R. M. Stevenson, M. B. Ward, R. B. Patel1, A. Boyer de la Giroday, I. Farrer N. Sköld, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, Nat. Phys. 6, 947 (2010).
http://dx.doi.org/10.1038/nphys1780
12.
12.B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, Appl. Phys. Lett. 90, 041101 (2007).
http://dx.doi.org/10.1063/1.2431758
13.
13.M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, Appl. Phys. Lett. 91, 051904 (2007).
http://dx.doi.org/10.1063/1.2761522
14.
14.A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, Phys. Rev. Lett. 99, 266802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.266802
15.
15.R. Trotta, E. Zallo, C. Ortix, P. Atkinson, J. D. Plumhof, J. van den Brink, A. Rastelli, and O. G. Schmidt, Phys. Rev. Lett. 109, 147401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.147401
16.
16.F. Ding, R. Singh, J. D. Plumhof, T. Zander, V. Křápek, Y. H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, and O. G. Schmidt, Phys. Rev. Lett. 104, 067405 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.067405
17.
17.K. D. Jöns, R. Hafenbrak, R. Singh, F. Ding, J. D. Plumhof, A. Rastelli, O. G. Schmidt, G. Bester, and P. Michler, Phys. Rev. Lett. 107, 217402 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.217402
18.
18.R. Trotta, P. Atkinson, J. D. Plumhof, E. Zallo, R. O. Rezaev, S. Kumar, S. Baunack, J. R. Schröter, A. Rastelli, and O. G. Schmidt, Adv. Mater. 24, 2668 (2012).
http://dx.doi.org/10.1002/adma.201200537
19.
19.S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, Appl. Phys. Lett. 88, 203113 (2006).
http://dx.doi.org/10.1063/1.2204843
20.
20.X. M. Dou, B. Q. Sun, B. R. Wang, S. S. Ma, R. Zhou, S. S. Huang, H. Q. Ni, and Z. C. Niu, Chin. Phys. Lett. 25, 1120 (2008).
http://dx.doi.org/10.1088/0256-307X/25/3/085
21.
21.M. Gong, W. W. Zhang, G. C. Guo, and L. X. He, Phys. Rev. Lett. 106, 227401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.227401
22.
22.J. P. Wang, M. Gong, G. C. Guo, and L. X. He, Appl. Phys. Lett. 101, 063114 (2012).
http://dx.doi.org/10.1063/1.4745188
23.
23.R. Trotta, J. M. Sánchez, I. Daruka, C. Ortix, and A. Rastelli, Phys. Rev. Lett. 114, 150502 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.150502
24.
24.J. P. Wang, M. Gong, G. C. Guo, and L. X. He, Phys. Rev. Lett. 115, 067401 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.067401
25.
25.J. X. Zhang, J. S. Wildmann, F. Ding, R. Trotta, Y. H. Huo, E. Zallo, D. Huber, A. Rastelli, and O. G. Schmidt, Nat. Commun. 7, 10387 (2016).
http://dx.doi.org/10.1038/ncomms10387
26.
26.Y. Chen, J. X. Zhang, M. Zopf, K. Jung, Y. Zhang, F. Ding, and O. G. Schmidt, Nat. Commun. 6, 10067 (2015).
http://dx.doi.org/10.1038/ncomms10067
27.
27.Y. H. Huo, V. Křápek, A. Rastelli, and O. G. Schmidt, Phys. Rev. B. 90, 041304(R) (2014).
http://dx.doi.org/10.1103/PhysRevB.90.041304
28.
28.X. F. Wu, H. Wei, X. M. Dou, K. Ding, Y. Yu, H. Q. Ni, Z. C. Niu, Y. Ji, S. S. Li, D. S. Jiang, G. C. Guo, L. X. He, and B. Q. Sun, Europhys. Lett. 107, 27008 (2014).
http://dx.doi.org/10.1209/0295-5075/107/27008
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4946850
Loading
/content/aip/journal/adva/6/4/10.1063/1.4946850
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4946850
2016-04-11
2016-09-28

Abstract

Exciton and biexciton emission energies as well as excitonic fine-structure splitting (FSS) in single InAs/GaAs quantum dots(QDs) have been continuously tuned in an optical cryostat using a developed uniaxial stress device. With increasing tensile stress, the red shift of excitonic emission is up to 5 nm; FSS decreases firstly and then increases monotonically, reaching a minimum value of approximately 10 μeV; biexciton binding energy decreases from 460 to 106 μeV. This technique provides a simple and convenient means to tune QD structural symmetry, exciton energy and biexciton binding energy and can be used for generating entangled and indistinguishable photons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4946850.html;jsessionid=6VT-1GN1BbKLXyB-DKC8Xo96.x-aip-live-06?itemId=/content/aip/journal/adva/6/4/10.1063/1.4946850&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4946850&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4946850'
Right1,Right2,Right3,