Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Maekawa, S. Takahashi, and H. Imamura, in Spin Dependent Transport in Magnetic Nanostructures, edited by S. Maekawa and T. Shinjo (Taylor and Francis, New York, 2002), pp. 143236.
2.E. Y. Tsymbal, O. N. Mryasov, and P. R. LeClair, J. Phys.: Condens. Matter 15, R109R142 (2003).
3.P. Seneor, A. Fert, J.L. Maurice, F. Montaigne, F. Petroff, and A. Vaures, Appl. Phys. Lett. 74, 4017 (1999).
4.G. Hu and Y. Suzuki, Phys. Rev. Lett. 89, 276601 (2002).
5.M. Bowen, M. Bibes, A. Barthélémy, J.P. Contour, A. Anane, Y. Lemaître, and A. Fert, Appl. Phys. Lett. 82, 233 (2003).
6.M.H. Jo, N.D. Mathur, N.K. Todd, and M.G. Blamire, Phys. Rev. B 61, R14901 (2000).
7.Y. Ishii, H. Yamada, H. Sato, H. Akoh, Y. Ogawa, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 89, 042509 (2006).
8.E. T. Wertz and Q. Li, Appl. Phys. Lett. 90, 142506 (2007).
9.J. O’Donnell, A. E. Andrus, S. Oh, E. V. Colla, and J. N. Eckstein, Appl. Phys. Lett. 76, 1914 (2000).
10.J. S. Noh, T. K. Nath, C. B. Eom, J. Z. Sun, W. Tian, and X. Q. Pan, Appl. Phys. Lett. 79, 233 (2001).
11.M. Tanaka and Y. Higo, Phys. Rev. Lett. 87, 026602 (2001).
12.L. Brey, C. Tejedor, and J. Fernandez-Rosier, Appl. Phys. Lett. 85, 1996 (2004).
13.A. D. Giddings, M. N. Khalid, T. Jungwirth, J. Wunderlich, S. Yasin, R. P. Campion, K. W. Edmonds, J. Sinova, K. Ito, K.-Y. Wang, D. Williams, B. L. Gallagher, and C. T. Foxon, Phys. Rev. Lett. 94, 127202 (2005).
14.J. Moser, A. Matos-Abiague, D. Schuh, W. Wegscheider, J. Fabian, and D. Weiss, Phys. Rev. Lett. 99, 056601 (2007).
15.B.G. Park, J. Wunderlich, D.A. Williams, S.J. Joo, K.Y. Jung, K.H. Shin, K. Olejnik, A.B. Shick, and T. Jungwirth, Phys. Rev. Lett. 100, 087204 (2008).
16.Li Gao, X. Jiang, S.-H. Yang, J.D. Burton, E.Y. Tsymbal, and S.S.P. Parkin, Phys. Rev. Lett. 99, 226602 (2007).
17.S. Hatanaka, S. Miwa, K. Matsuda, K. Nawaoka, K. Tanaka, H. Morishita, M. Goto, N. Mizouchi, T. Shinjo, and Y. Suzuki, Appl. Phys. Lett. 107, 082407 (2015).
18.K. Wang, T.L.A. Tran, P. Brinks, J.G.M. Sanderink, T. Bolhuis, W.G. van der Wiel, and M.P. de Jong, Phys. Rev. B 88, 054407 (2013).
19.T. Nakamura, H. Inada, and M. Iiyama, Appl. Surf. Sci. 130-132, 576 (1998).
20.H. Yamada, Y. Ogawa, Y. Ishii, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura, Science 305, 646 (2004).
21.S. Valencia, Z. Konstantinovic, D. Schmitz, A. Gaupp, Ll. Balcells, and B. Martinez, Phys. Rev. B 84, 024413 (2011).
22.S. Valencia, L. Peña, Z. Konstantinovic, Ll. Balcells, R. Galceran, D. Schmitz, F. Sandiumenge, M. Casanove, and B. Martınez, J. Phys.: Condens. Matter 26, 166001 (2014).
23.R. Galceran, Ll. Balcells, A. Pomar, Z. Konstantinović, F. Sandiumenge, and B. Martínez, J. of Appl. Phys. 117, 103909 (2015).
24.B.J. Jonsson-Akerman, R. Escudero, C. Leighton, S. Kim, and I.K. Schuller, Appl. Phys. Lett. 77, 1870 (2000).
25.J. Z. Sun, K. P. Roche, and S. S. P. Parkin, Phys. Rev. B 61, 11244 (2000);
25.J. Z. Sun, D. W. Abraham, K. P. Roche, and S. S. P. Parkin, Appl. Phys. Lett. 73, 1008 (1998).
26.M. Viret, M. Drouet, J. Nassar, J. P. Contour, C. Fermon, and A. Fert, Europhys. Lett. 39, 545 (1997).
27.J. Z. Sun, L. Krusin-Elbaum, P. R. Ducombe, A. Gupta, and R. B. Laibowitz, Appl. Phys. Lett. 70, 1769 (1997).
28.A. Matos-Abiague and J. Fabian, Phys. Rev. B 79, 155303 (2009).
29.M. Ciorga, M. Schlapps, A. Einwanger, S. Geißler, J. Sadowski, W. Wegscheider et al., New J. Phys. 9, 351 (2007).

Data & Media loading...


Article metrics loading...



The magnetotransport properties of LaSrMnO(LSMO)/ LaAlO(LAO)/Pt tunnelingjunctions have been analyzed as a function of temperature and magnetic field. The junctions exhibit magnetoresistance (MR) values of about 37%, at H=90 kOe at low temperature. However, the temperature dependence of MR indicates a clear distinct origin than that of conventional colossal MR. In addition, tunnelinganisotropic MR (TAMR) values around 4% are found at low temperature and its angular dependence reflects the expected uniaxial anisotropy. The use of TAMR response could be an alternative of much easier technological implementation than conventional MTJs since only one magnetic electrode is required, thus opening the door to the implementation of more versatile devices. However, further studies are required in order to improve the strong temperature dependence at the present stage.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd