Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947072
1.
1.See, for examples, A. L. Lehninger, D. L. Nelson, and M. M. Cox, Principles of Biochemistry (Worth Pub. Inc., New York, 1993), and references therein.
2.
2.Molecular Biology of the Gene, edited by J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner (Benjamin/Cummings Pub. Co. Inc., 1987), Vol. 1.
3.
3.C. Montell, Cell 131, 19 (2007).
http://dx.doi.org/10.1016/j.cell.2007.09.022
4.
4.R. C. Hardie, Nature 450, 37 (2007).
http://dx.doi.org/10.1038/450037a
5.
5.H. Akamatu and H. Inokuchi, J. Chem. Phys. 18, 810 (1950).
http://dx.doi.org/10.1063/1.1747780
6.
6.H. Shirakawa, E. J. Louis, A. G. MacDiarmid, Ch. K. Chiang, and A. J. Heeger, J. Chem. Soc., Chem. Commun. 474, 578 (1977).
http://dx.doi.org/10.1039/c39770000578
7.
7.C. Joachim, J.K. Gimzewski, and A. Aviram, Nature 408, 541 (2000).
http://dx.doi.org/10.1038/35046000
8.
8.V. Balzani, A. Credi, and M. Venturi, Molecular Devices and Machines-A Journey into the Nanoworld (WILEY-VCH Verlag GmbH & Co. KGaA, 2003).
9.
9.R. Schillinger, Z. Sljivancanin, B. Hammer, and T. Greber, Phys. Rev. Lett. 98, 136102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.136102
10.
10.Bioelectronics From Theory to Applications, edited by I. Willner and E. Katz (WILEY-VCH Verlag GmbH & Co. KGaA, 2005).
11.
11.M. Kamada, H. Sugiyama, K. Takahashi, J. Azuma, S. Kitajima, K. Ogawa, M. Sumimoto, K. Hori, and H. Fujimoto, J. Phys. Soc. Jpn. 79, 034709 (2010).
http://dx.doi.org/10.1143/JPSJ.79.034709
12.
12.K. Ogawa, T. Tsujibayashi, K. Takahashi, J. Azuma, M. Ichimiya, H. Fujimoto, M. Sumimoto, and M. Kamada, J. Appl. Phys. 110, 103718 (2011).
http://dx.doi.org/10.1063/1.3662146
13.
13.K. Ogawa, T. Tsujibayashi, K. Takahashi, J. Azuma, and M. Kamada, J. Appl. Phys. 112, 023715 (2012).
http://dx.doi.org/10.1063/1.4740078
14.
14.T. Tujibayashi, J. Azuma, I. Yamamoto, K. Takahashi, and M. Kamada, Appl. Phys. Lett. 106, 173702 (2015).
http://dx.doi.org/10.1063/1.4919002
15.
15.K. Takahashi, Y. Kondo, J. Azuma, and M. Kamada, J. Electron Spectroscopy & Rel. Phenom. 144/147, 1093 (2005).
http://dx.doi.org/10.1016/j.elspec.2005.01.184
16.
16.Y. Zubavichus, A. Shaporenko, M. Grunze, and M. Zharnikov, J. Phys. Chem. Lett. A. 109, 6998 (2005).
17.
17.E. Otero and S. G. Urquhart, J. Phys. Chem. A 110, 12121 (2006).
http://dx.doi.org/10.1021/jp064082a
18.
18.We discuss the occupied and unoccupied electronic states in terms of HOMO and LUMO states. These states are composed of several molecular orbitals in a solid state, but cannot be separatedly observed.
19.
19.J. R. Candid-Junior et al., Chem. Phys. Lett. 512, 208 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.07.028
20.
20.P. A. Bruhwiler, O. Karis, and N. Martensson, Rev. Mod. Phys. 74, 703 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.703
21.
21.A. Fohlisch, P. Feulner, F. Hennies, A. Fink, D. Menzel, D. Sanchez-Portal, P.M. Echenique, and W. Wurth, Nature 436, 373 (2005).
http://dx.doi.org/10.1038/nature03833
22.
22.M. Coville and T.D. Thomas, Phys. Rev. A43, 6053 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.6053
23.
23.M. Magnuson, J. Guo, C. Såthe, J.-E. Rubensson, J. Nordgren, P. Glans, L. Yang, P. Salek, and H. Ågren, Phys. Rev. A 59, 4281 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.4281
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947072
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947072
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947072
2016-04-13
2016-09-30

Abstract

Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4,  m ≥ 3) orbitals. Resonant photoelectron spectra at S-L and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947072.html;jsessionid=Xnobmf76xzR0Uq7HpX-cb-Dy.x-aip-live-03?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947072&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947072&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947072'
Right1,Right2,Right3,