Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.O. Bubnova and X. Crispin, Energy Environ. Sci. 5, 9345 (2012).
2.L. Yan, M. Shao, H. Wang, D. Dudis, A. Urbas, and B. Hu, Adv. Mater. 23, 4120 (2011).
3.Y. Hiroshige, M. Ookawa, and N. Toshima, Synth. Met. 156, 1341 (2006).
4.K. Chang, M. Jeng, C. Yang, Y. Chou, S. Wu, M. Thomas, and Y. Peng, J. Electron. Mater. 38, 1182 (2009).
5.J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, Synth. Met. 126, 311 (2001).
6.B. Zhang, J. Sun, H. E. Katz, F. Fang, and R. L. Opila, ACS Appl. Mater. Interface 2, 3170 (2010).
7.H. Itahara, M. Maesato, R. Asahi, H. Yamochi, and G. Saito, J. Electron. Mater. 38, 1171 (2009).
8.M. Scholdt, H. Do, J. Lang, A. Gall, A. Colsmann, U. Lemmer, J. Koenig, M. Winkler, and H. Boettner, J. Electron. Mater. 39, 1589 (2010).
9.Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu, and D. Zhu, Adv. Mater. 24, 932 (2012).
10.B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
11.Y. I. Ravich, CRC Handbook of Thermoelectrics (CRC Press LLC, Boca Raton, FL, 1995).
12.D. S. Maddison, J. Unsworth, and R. B. Roberts, Synth. Met. 26, 99 (1988).
13.F. Yakuphanoglu and B. F. Senkal, J. Phys. Chem. C 111, 1840 (2007).
14.F. Yakuphanoglu, B. F. Senkal, and A. Sarac, J. Electron. Mater. 37, 930 (2008).
15.D. Kim, Y. Kim, K. Choi, J. C. Grunlan, and C. H. Yu, ACS Nano 4, 513 (2010).
16.F. Yakuphanoglu, H. T. Liu, and J. K. Xu, J. Phys. Chem. B 111, 7535 (2007).
17.S. Wakim, B. R. Aich, and Y. Tao, Polymer Reviews 48, 432 (2008).
18.Y. Xuan, X. Liu, S. Desbief, P. Leclere, M. Fahlman, R. Lazzaroni, M. Berggren, J. Cornil, D. Emin, and X. Crispin, Phys. Rev. B 82, 115454 (2010).
19.H. Yoon, B. S. Jung, and H. Lee, Synth. Met. 41, 699 (1991).
20.B. A. Lunn, J. Unsworth, N. G. Booth, and P. C. Innis, J. Mater. Sci. 28, 5092 (1993).
21.B. Hu and Y. Wu, Nat. Mater. 6, 985 (2007).
22.B. Hu, L. Yan, and M. Shao, Adv. Mater. 21, 1500 (2009).
23.M. Walter, J. Walowski, V. Zbarsky, M. Münzenberg, M. Schäfers, D. Ebke, G. Reiss, A. Thomas, P. Peretzki, M. Seibt, J. S. Moodera, M. Czerner, M. Bachmann, and C. Heiliger, Nat. Mater. 10, 742 (2011).
24.M. Oussena, R. Gagnon, Y. Wang, and M. Aubin, Phys. Rev. B 46, 528 (1992).
25.L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
26.C. Yu, Y. Kim, D. Kim, and J. C. Grunlan, Nano Lett. 8, 4428 (2008).
27.N. Dubey and M. Leclerc, Polym. Phys. 49, 467 (2011).
28.C. Yu, K. Choi, L. Yin, and J. C. Grunlan, ACS Nano 5, 7885 (2011).
29.B. S. W. Kuo, J. C. M. Li, and A. W. Schmid, Appl. Phys. A 55, 289 (1992).
30.Q. Liu, D. Hu, H. Wang, M. Stanford, H. Wang, and B. Hu, Phys. Chem. Chem. Phys. 16, 22201 (2014).
31.D. Hu, Q. Liu, J. Tisdale, T. Lei, J. Pei, H. Wang, A. Urbas, and B. Hu, ACS Nano 9, 5208 (2015).
32.D. Hu, Q. Liu, J. Tisdale, H. Nam, S. Park, H. Wang, A. Urbas, and B. Hu, Organic Electronics 26, 117 (2015).
33.R. Huang, R. Ram, M. Manfra, M. Connors, L. Missaggia, and G. Turner, J. Appl. Phys. 101, 046102 (2007).
34.G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).
35.Q.S. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, Appl. Phys. Express 7, 031601 (2014).
36.Y. Hasegawa, Y. Ishikawa, T. Komine, T. E. Huber, A. Suzuki, H. Morita, and H. Shirai, Appl. Phys. Lett. 85, 917 (2004).
37.R. Mitdank, M. Handwerg, C. Steinweg, W. Töllner, M. Daub, K. Nielsch, and S. F. Fischer, J. Appl.Phys. 111, 104320 (2012).
38.R Ang, Y. P. Sun, Y. Q. Ma, B. C. Zhao, X. B. Zhu, and W. H. Song, J. Appl. Phys. 100, 063902 (2006).
39.O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J.-B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, and X. Crispin, Nat. Mater. 13, 190 (2014).
40.M.-S. Nam, C. Mézière, P. Batail, L. Zorina, S. Simonov, and A. Ardavan, Sci. Rep. 3, 3390 (2013).

Data & Media loading...


Article metrics loading...



This article reports giant magnetic fieldeffects on the Seebeck coefficient by exerting a Lorentz force on charge diffusion based on vertical multi-layer ITO/PEDOT:PSS/Au thin-film devices. The Lorentz force, induced by an external magnetic field, changes the charge transport and consequently generates angular dependent magnetoresistance. The proposed mechanism of the magneto-Seebeck effect is proved by measuring the magnetoresistance at a parallel, 45o and perpendicular angle to the temperature gradient. The gradual change of the magnetoresistance from a parallel to perpendicular angle indicates that the Lorentz force is a key driving force to develop the magneto-Seebeck effect. Therefore, our experimental results demonstrate a magnetic approach to control the thermoelectricproperties in organic materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd