Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947130
1.
1.K. Hiemenz, “Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder,” Dinglers Polytech. J. 326, 321-324 (1911).
2.
2.S. Goldstein, Modern Developments in Fluid Dynamics (Oxford Univ. Press, London, 1938).
3.
3.F. Homann, “Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel,” Z. Angew. Math. Mech. 16, 153-164 (1936).
http://dx.doi.org/10.1002/zamm.19360160304
4.
4.S. Sibulkin, “Heat transfer near the forward stagnation point of a body of revolution,” J. Aeronaut. Sci. 19, 570-571 (1952).
5.
5.L.J. Crane, “Flow past a stretching plate,” Z. Angew. Math. Phys. 21, 645-647 (1970).
http://dx.doi.org/10.1007/BF01587695
6.
6.L.J. Grubka and K.M. Bobba, “Heat transfer characteristics of a continuous stretching surface with variable temperature,” J. Heat Transfer 107, 248-250 (1985).
http://dx.doi.org/10.1115/1.3247387
7.
7.J. Ahmed, A. Shahzad, M. Khan, and R. Ali, “A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet,” AIP Advances 5, 117117 (2015); doi: 10.1063/1.4935571.
http://dx.doi.org/10.1063/1.4935571
8.
8.M. Khan and W.A. Khan, “Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet,” AIP Advances 5, 107138 (2015); doi: 10.1063/1.4935043.
http://dx.doi.org/10.1063/1.4935043
9.
9.M. Mustafa, J.A. Khan, T. Hayat, and A. Alsaedi, “Simulations for Maxwell fluid flow past a convectively heated exponentially stretching sheet with nanoparticles,” AIP Advances 5, 037133 (2015); doi: 10.1063/1.4916364.
http://dx.doi.org/10.1063/1.4916364
10.
10.M. Khan and M.U. Rahman, “Flow and heat transfer to modified second grade fluid over a non-linear stretching sheet,” AIP Advances 5, 087157 (2015); doi: 10.1063/1.4929480.
http://dx.doi.org/10.1063/1.4929480
11.
11.T.R. Mahapatra and A.S. Gupta, “Heat transfer in stagnation-point flow towards a stretching sheet,” Heat Mass Transfer 38, 517-521 (2002).
http://dx.doi.org/10.1007/s002310100215
12.
12.T.R. Mahapatra and A.S. Gupta, “Stagnation-point flow towards a stretching surface,” Can. J. Chem. Eng. 81, 258-263 (2003).
http://dx.doi.org/10.1002/cjce.5450810210
13.
13.R. Nazar, N. Amin, D. Filip, and I. Pop, “Stagnation point flow of a micropolar fluid towards a stretching sheet,” Int. J. Non-Linear Mech. 39, 1227-1235 (2004).
http://dx.doi.org/10.1016/j.ijnonlinmec.2003.08.007
14.
14.A. Ishak, K. Jafar, R. Nazar, and I. Pop, “MHD stagnation point flow towards a stretching sheet,” Physica A 388, 3377-3383 (2009).
http://dx.doi.org/10.1016/j.physa.2009.05.026
15.
15.C.Y. Wang, “Stagnation flow towards a shrinking sheet,” Int. J. Non-Linear Mech. 43, 377-382 (2008).
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.12.021
16.
16.A. Ishak, Y.Y. Lok, and I. Pop, “Stagnation-point flow over a shrinking sheet in a micropolar fluid,” Chem. Eng. Comm. 197, 1417-1427 (2010).
http://dx.doi.org/10.1080/00986441003626169
17.
17.P.D. Weidman, D.G. Kubitschek, and A.M.J. Davis, “The effect of transpiration on self-similar boundary layer flow over moving surfaces,” Int. J. Eng. Sci. 44, 730-737 (2006).
http://dx.doi.org/10.1016/j.ijengsci.2006.04.005
18.
18.A. Postelnicu and I. Pop, “Falkner–skan boundary layer flow of a power-law fluid past a stretching wedge,” Appl. Math. Comput. 217, 4359-4368 (2011).
http://dx.doi.org/10.1016/j.amc.2010.09.037
19.
19.A.V. Roşca and I. Pop, “Flow and heat transfer over a vertical permeable stretching/ shrinking sheet with a second order slip,” Int. J. Heat Mass Transfer 60, 355-364 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.028
20.
20.M. Miklavčič and C.Y. Wang, “Viscous flow due to a shrinking sheet,” Quart. Appl. Math. 64, 283-290 (2006).
http://dx.doi.org/10.1090/S0033-569X-06-01002-5
21.
21.T. Fang and J. Zhang, “Closed-form exact solutions of MHD viscous flow over a shrinking sheet,” Commun. Nonlinear Sci. Numer. Simulat. 14, 2853-2857 (2009).
http://dx.doi.org/10.1016/j.cnsns.2008.10.005
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947130
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947130
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947130
2016-04-14
2016-12-08

Abstract

The stagnation point flow over a linearly stretching or shrinking sheet is considered in the present study. The transformed ordinary differential equations are solved numerically. Dual solutions are possible for the shrinking case, while the solution is unique for the stretching case. For the shrinking case, a linear temporal stability analysis is performed to determine which one of the solution is stable and thus physically reliable.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947130.html;jsessionid=egK5kTGnPeEoPmjoMDwn4iIS.x-aip-live-03?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947130&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947130&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947130'
Right1,Right2,Right3,