Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/4/10.1063/1.4947132
1.
1.P. F. Carcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).
http://dx.doi.org/10.1063/1.96254
2.
2.F. J. A. den Broeder, D. Kuiper, H. C. Donkersloot, and W. Hoving, Appl. Phys. A 49, 507 (1989).
http://dx.doi.org/10.1007/BF00617017
3.
3.B. N. Engel, C. D. England, R. A. Van Leeuwen, M. H. Wiedmann, and C. M. Falco, Phys. Rev. Lett. 67, 1910 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.1910
4.
4.S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Materials 9, 721 (2010).
http://dx.doi.org/10.1038/nmat2804
5.
5.S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 93, 082508 (2008).
http://dx.doi.org/10.1063/1.2976435
6.
6.L. Hao, J. Cao, M. Liu, H. Dang, T. Jin, Y. Wang, F. Wei, and D. Wei, J. Appl. Phys. 115, 17C122 (2014).
http://dx.doi.org/10.1063/1.4868924
7.
7.T. Zhu, Y. Yang, R. C. Yu, H. Ambaye, V. Lauter, and J. Q. Xiao, Appl. Phys. Lett. 100, 202406 (2012).
http://dx.doi.org/10.1063/1.4718423
8.
8.S. Ikeda, J. Hayakawa, Young Min Lee, F. Matsukura, Yuzo Ohno, T. Hanyu, and H. Ohno, IEEE Transactions on Electron Devices 54, 991 (2007).
http://dx.doi.org/10.1109/TED.2007.894617
9.
9.H. Meng, W. H. Lum, R. Sbiaa, S. Y. H. Lua, and H. K. Tan, J. Appl. Phys. 110, 033904 (2011).
http://dx.doi.org/10.1063/1.3611426
10.
10.V. Sokalski, M. T. Moneck, E. Yang, and J. -G. Zhu, Appl. Phys. Lett. 101, 072411 (2012).
http://dx.doi.org/10.1063/1.4746426
11.
11.M. Yamanouchi, R. Koizumi, S. Ikeda, H. Sato, K. Mizunuma, K. Miura, H. D. Gan, F. Matsukura, and H. Ohno, J. Appl. Phys. 109, 07C712 (2011).
http://dx.doi.org/10.1063/1.3554204
12.
12.V. Sokalski, D. M. Bromberg, M. T. Moneck, E. Yang, and J. -G. Zhu, IEEE Trans. Magn. 49, 43834385 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2242448
13.
13.J. Sinha, M. Hayashi, A. J. Kellock, S. Fukami, M. Yamanouchi, H. Sato, S. Ikeda, S. Mitani, S. -h. Yang, S. S. P. Parkin, and H. Ohno, Appl. Phys. Lett. 102, 242405 (2013).
http://dx.doi.org/10.1063/1.4811269
14.
14.H. Meng, R. Sbiaa, C. C. Wang, S. Y. H. Lua, and M. A. K. Akhtar, J. Appl. Phys. 110, 103915 (2011).
http://dx.doi.org/10.1063/1.3662893
15.
15.L. Cuchet, B. Rodmacq, S. Auffret, R.C. Sousa, and B. Dieny, Appl. Phys. Lett. 105, 052408 (2014).
http://dx.doi.org/10.1063/1.4892450
16.
16.V. B. Naik, H. Meng, and R. Sbiaa, AIP Advances 2, 042182 (2012).
http://dx.doi.org/10.1063/1.4771996
17.
17.D. C. Worledge, G. Hu, D. W. Abraham, J. Z. Sun, P. L. Trouilloud, J. Nowak, S. Brown, M. C. Gaidis, E. J. O’Sullivan, and R. P. Robertazzi, Appl. Phys. Lett. 98, 022501 (2011).
http://dx.doi.org/10.1063/1.3536482
18.
18.S. Y. Jang, S. H. Lim, and S. R. Lee, J. Appl. Phys. 107, 09C707 (2010).
19.
19.T. Liu, J. W. Cai, and Li Sun, AIP Advances 2, 032151 (2012).
http://dx.doi.org/10.1063/1.4748337
20.
20.J. Cao, J. Kanak, T. Stobiecki, P. Wisniowski, and P. P. Freitas, IEEE Trans. Magn. 45(10), 3464 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2025382
21.
21.K. H. Khoo, G. Wu, M. H. Jhon, M. Tran, F. Ernult, K. Eason, H. J. Choi, and C. K. Gan, Phys.Rev. B 87, 174403 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.174403
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/4/10.1063/1.4947132
Loading
/content/aip/journal/adva/6/4/10.1063/1.4947132
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/4/10.1063/1.4947132
2016-04-14
2016-09-29

Abstract

Films with a structure of Ta (5 nm)/CoFeB (0.8–1.5 nm)/MgO (1 nm)/Ta (1 nm) were deposited on Corning glass substrates by magnetron sputtering. The as-deposited films with CoFeB layer thickness from 0.8 to 1.3 nm show perpendicular magnetic anisotropy (PMA). After annealing at a proper temperature, the PMA of the films can be enhanced remarkably. A maximum effective anisotropy field of up to 9 kOe was obtained for 1.0- and 1.1-nm-thick CoFeB layers annealed at an optimum temperature of 300 °C. A 4-kOe magnetic field was applied during annealing to study its effect on the PMA of the CoFeB layers. The results confirmed that applying a perpendicular magnetic field during annealing did not improve the maximum PMA of the films, but it did enhance the PMA of the thinner films at a lower annealing temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/4/1.4947132.html;jsessionid=7GZ_AY2NW-wyVsi-cB4GcPvs.x-aip-live-02?itemId=/content/aip/journal/adva/6/4/10.1063/1.4947132&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/4/10.1063/1.4947132&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4947132'
Right1,Right2,Right3,