Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. F. Carcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).
2.F. J. A. den Broeder, D. Kuiper, H. C. Donkersloot, and W. Hoving, Appl. Phys. A 49, 507 (1989).
3.B. N. Engel, C. D. England, R. A. Van Leeuwen, M. H. Wiedmann, and C. M. Falco, Phys. Rev. Lett. 67, 1910 (1991).
4.S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Materials 9, 721 (2010).
5.S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 93, 082508 (2008).
6.L. Hao, J. Cao, M. Liu, H. Dang, T. Jin, Y. Wang, F. Wei, and D. Wei, J. Appl. Phys. 115, 17C122 (2014).
7.T. Zhu, Y. Yang, R. C. Yu, H. Ambaye, V. Lauter, and J. Q. Xiao, Appl. Phys. Lett. 100, 202406 (2012).
8.S. Ikeda, J. Hayakawa, Young Min Lee, F. Matsukura, Yuzo Ohno, T. Hanyu, and H. Ohno, IEEE Transactions on Electron Devices 54, 991 (2007).
9.H. Meng, W. H. Lum, R. Sbiaa, S. Y. H. Lua, and H. K. Tan, J. Appl. Phys. 110, 033904 (2011).
10.V. Sokalski, M. T. Moneck, E. Yang, and J. -G. Zhu, Appl. Phys. Lett. 101, 072411 (2012).
11.M. Yamanouchi, R. Koizumi, S. Ikeda, H. Sato, K. Mizunuma, K. Miura, H. D. Gan, F. Matsukura, and H. Ohno, J. Appl. Phys. 109, 07C712 (2011).
12.V. Sokalski, D. M. Bromberg, M. T. Moneck, E. Yang, and J. -G. Zhu, IEEE Trans. Magn. 49, 43834385 (2013).
13.J. Sinha, M. Hayashi, A. J. Kellock, S. Fukami, M. Yamanouchi, H. Sato, S. Ikeda, S. Mitani, S. -h. Yang, S. S. P. Parkin, and H. Ohno, Appl. Phys. Lett. 102, 242405 (2013).
14.H. Meng, R. Sbiaa, C. C. Wang, S. Y. H. Lua, and M. A. K. Akhtar, J. Appl. Phys. 110, 103915 (2011).
15.L. Cuchet, B. Rodmacq, S. Auffret, R.C. Sousa, and B. Dieny, Appl. Phys. Lett. 105, 052408 (2014).
16.V. B. Naik, H. Meng, and R. Sbiaa, AIP Advances 2, 042182 (2012).
17.D. C. Worledge, G. Hu, D. W. Abraham, J. Z. Sun, P. L. Trouilloud, J. Nowak, S. Brown, M. C. Gaidis, E. J. O’Sullivan, and R. P. Robertazzi, Appl. Phys. Lett. 98, 022501 (2011).
18.S. Y. Jang, S. H. Lim, and S. R. Lee, J. Appl. Phys. 107, 09C707 (2010).
19.T. Liu, J. W. Cai, and Li Sun, AIP Advances 2, 032151 (2012).
20.J. Cao, J. Kanak, T. Stobiecki, P. Wisniowski, and P. P. Freitas, IEEE Trans. Magn. 45(10), 3464 (2009).
21.K. H. Khoo, G. Wu, M. H. Jhon, M. Tran, F. Ernult, K. Eason, H. J. Choi, and C. K. Gan, Phys.Rev. B 87, 174403 (2013).

Data & Media loading...


Article metrics loading...



Films with a structure of Ta (5 nm)/CoFeB (0.8–1.5 nm)/MgO (1 nm)/Ta (1 nm) were deposited on Corning glass substrates by magnetron sputtering. The as-deposited films with CoFeB layer thickness from 0.8 to 1.3 nm show perpendicular magnetic anisotropy (PMA). After annealing at a proper temperature, the PMA of the films can be enhanced remarkably. A maximum effective anisotropy field of up to 9 kOe was obtained for 1.0- and 1.1-nm-thick CoFeB layers annealed at an optimum temperature of 300 °C. A 4-kOe magnetic field was applied during annealing to study its effect on the PMA of the CoFeB layers. The results confirmed that applying a perpendicular magnetic field during annealing did not improve the maximum PMA of the films, but it did enhance the PMA of the thinner films at a lower annealing temperature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd